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Abstract. Relational logics aim to stablish properties of two expressions
by combining synchronous proof rules, which reason about structurally
equivalent expressions, with asynchronous proof rules, which only reason
about one of the two expressions. As a result, relational logics are not
syntax-directed and their algorithmic implementation is challenging. In
this work, we design OBRA an algorithmic, relational, and bidirectional
type system that only has synchronous rules to preserve predictability
and relies on an external oracle to handle syntactic differences. We for-
malize OBRA and prove that it is equivalent to Relational Higher-Order
Logic (RHOL). We implement OBRA by extending Liquid Haskell with
synchronous relational rules and using user-provided unary proofs as
the external oracle. Further, OBRA automatically translates relational
properties to unary theorems with proof templates that can be manually
augmented, debugged, and verified using Liquid Haskell. We evaluate
OBRA on 12 benchmarks out of which 7 were proved automatically and
the rest required smaller or equal proofs than the unary case.
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1 Introduction

Relational higher-order type systems [?] and logics [?,?] have been designed to
simplify the verification of relational properties, i.e. properties that relate two
programs or two runs of the same program. Such systems have been developed to
reason about a wide variety of properties, including cost analysis [?], differential
privacy [?], and information flow control [?]. As a simple relational property,
below we relate how map and filter modify the length of their input lists:

filter ~ map | ∀f1 ∼ f2. true ⇒ ∀xs1 ∼ xs2. len xs1 ≤ len xs2

⇒ len (r1 f1 xs1) ≤ len (r2 f2 xs2)

The property states that for each pair of functions f1 and f2 and pair of lists
xs1 and xs2 such that the length of xs1 is less than or equal to the length of xs2,
the length of filter f1 xs1 is less than or equal to the length of map f2 xs2,
where the special symbols r1 and r2 are used to refer to the related functions.

Relational verification of such statements proceeds by unfolding the left-hand
side and right-hand side expressions, in our example filter f1 xs1 and map

f2 xs2, according to the rules of an inductive system. In type-based systems, the



rules are usually synchronous and relate expressions of the same structure, e.g.
they relate a function application to a function application or an if-expression
to an if-expression, but not a function application to an if-expression. Such rules
add up to a syntax-directed type system that can automatically establish very
precise properties when comparing two similar expressions, like two runs of the
same function. However, analysis of syntactically different expressions via type
systems is limited [?]. Some works, such as [?] use example-driven heuristics to
deal with program differences in common cases, but as a drawback, such systems
lose predictability and hence, user-friendly error reporting.

To systematically analyze expressions of different structure, the Relational
Higher-Order Logic (RHOL) [?,?,?] supports asynchronous rules. Such rules can
choose just one of the related expressions for unfolding, e.g. they can compare
an application to an if-expression, as required to relate the map with the guarded
filter in our example. The co-existence of both synchronous and asynchronous
rules in RHOL leads to a set of typing rules that is not syntax directed, thus
reasoning in RHOL is non-algorithmic. Such systems focus on the theoretical
aspects of relational logics and are inherently not syntax directed. As a conse-
quence, their implementations have not yet been really explored.

Yet, the proofs conducted in RHOL can be translated to and checked by
an algorithmic system, such as the unary refinement type system of Liquid
Haskell [?]. In theory, this is possible because RHOL is equivalent to HOL
(Theorem 3 of [?]) and HOL proofs can be encoded in Liquid Haskell (The-
orem 3.1 of [?]). In practice, both [?] and [?] manually encoded RHOL proofs
in Liquid Haskell and found that the process is feasible but tedious. Most of
the times the syntax directed reasoning is used to deconstruct the related terms.
Thus, we conjectured that the extension of Liquid Haskell with algorithmic,
synchronous rules would ease the proof process of relational properties.

In this work, we design and implement OBRA, an oracle-based, relational,
and algorithmic verifier that extends Liquid Haskell with synchronous re-
lational rules. OBRA has a bidirectional, relational type system that not only
verifies relational properties, but also translates them to unary Liquid Haskell
theorems and automatically generates synchronous proofs templates for them.
These proofs are developed using Liquid Haskell as theorem-prover [?] and
can be interactively adjusted as necessary. This interaction of unary and rela-
tional systems, established a novel method of proving relational properties that
takes the best of both worlds: our system has the full expressiveness of RHOL
via unary proofs, yet supports automation of synchronous reasoning. Moreover,
OBRA is the first relational system that generates proofs for relational proper-
ties and utilizes an underlying existing unary system. To measure the automation
of our method, we used OBRA to prove 12 properties and compared our proof
sizes against the existing manual proofs in plain Liquid Haskell [?].

Concretely, our contributions are the following:

1) We design an algorithmic, bidirectional, relational, refinement type system
on top of a unary refinement type checker that uses a novel oracle rule (rule
T-Obl of fig. 4) to make the system complete (theorem 1) w.r.t. RHOL.



2) We design a translation from the relational typing statements to unary theo-
rems (§ 3.3) to ease the development of relational proofs. Our system reduces the
proof of a relational property to the verification of an equivalent unary theorem.
3) We implement our system on top of Liquid Haskell and evaluate it on
12 examples (table 1). Our evaluation shows that the synchronous rules are
sufficient to prove 58% of our benchmarks, while for the rest, our translation
generates unary theorems that can be manually completed. In total, our method
reduces manual proof effort by 36%, compared to purely manual unary proofs.

2 Overview of OBRA

OBRA receives from the user a pair of expressions and a relational property
(§ 2.1), then generates for the property a unary proof term that is potentially
incomplete (§ 2.2), and returns it to the user who completes the proof as an
oracle (§ 2.3). § 2.4 summarizes the workflow of OBRA.

2.1 Relational Properties

Relational properties express relations between two expressions or two runs of
the same expression. As an example, consider the following map function such
that map f xs applies f to all the elements of xs:

map :: (a → b) → [a] → [b]

map f [] = []

map f (x:xs) = f x : map f xs

Our first relational property is that map preserves the length inequality when
applied to two different lists, expressed as a relational signature:

relational map ~ map :: (Int → Int) → [Int] → [Int]

~ (Int → Int) → [Int] → [Int]

| ∀f1 ∼ f2. (true ⇒ true) ⇒ ∀xs1 ∼ xs2. len xs1 ≤ len xs2

⇒ len (r1 f1 xs1) ≤ len (r2 f2 xs2)

where len is inductively defined to return the length of a list. Reading the
relational signature from left to right, the relational keyword declares that a
relational specification follows. Then, map ~ map states that the property relates
two runs of the map function. Next, we provide unary types of related expressions
separated by a tilde. To keep our system simple (and reducible to RHOL § 3.4),
these types are monomorphic. So, here, we relate two runs of map on integers.
The final part of the signature is the assertion that states the preservation of
length inequality. The assertion is of the form ∀x1 ∼ x2.ϕx ⇒ ϕ and contains one
pair of quantifiers for each pair of arguments of the related functions. The first
assumption ∀f1 ∼ f2. (true ⇒ true) relates the pair of functions f1 and f2 and
it is trivial, meaning that their input and output values can be arbitrarily related.
Next is the non-trivial assumption ∀xs1 ∼ xs2. len xs1 ≤ len xs2 about xs1 and
xs2. Under this condition, we prove len (r1 f1 xs1) ≤ len (r2 f2 xs2) where
r1 and r2 are reserved variables for the left and right instances of the related
expressions, which here are the two runs of map.



Automatic verification of the above relational assertion is very challenging.
relSTLC [?] is an automatic verifier that relies on synchronous rules and will
fail to prove the above property. Since the assumption len xs1 ≤ len xs2 does
not ensure that the length of the two input lists are equal, there is no guarantee
that the two runs of map have the same syntactic structure thus, the synchronous
rules of relSTLC will fail to apply. relSTLC would trivially prove a length
preservation property for map that assumes equal length of the two input lists,
but fails for inequality. Similarly, the synchronous rules of RHOL [?] will fail to
apply, since the input lists do not have the same structure. However, it is still
possible to complete the proof in RHOL using asynchronous rules. Concretely,
one can first case split on the left list and, at each case, case split on the right
list, and at all the four cases evoke higher-order logic to prove the property.

OBRA adopts this exhaustive case split approach as the default synchronous
rule and is able to prove the map property. Concretely, the T-Case rule of fig. 4
of § 3 will generate four cases for all the structure combinations of the two input
lists. Thus, our system is more general than relSTLC, and still algorithmic.

Hence, OBRA verifies the map property by case splitting on all combinations
of the input list structure. This information alone is not enough to understand
why the property holds and, more importantly, how to repair a potentially failing
proof. To gain understanding and repair capabilities, OBRA generates a unary
proof term that can be checked by Liquid Haskell and inspected by the user.

2.2 Unary Verification Of Relational Properties

As evidence that the map~map property holds, OBRA automatically generates a
unary theorem, named mapRmap with its proof term. Using Liquid Haskell as
a theorem prover [?], the theorem is encoded as a refinement type of the mapRmap

function and its proof as the body definition of mapRmap .

Relational to Unary Specification Below is the generated unary theorem mapRmap .
mapRmap :: f1:(Int → Int) → f2:(Int → Int)

→ f1f2:(x1:Int → x2:Int → x1x2:() → ())

→ xs1:[Int] → xs2:[Int] → xs1xs2:{len xs1 ≤ len xs2}

→ {len (map f1 xs1) ≤ len (map f2 xs2)}

In general, for a relational assertion ∀x1 ∼ x2.ϕx ⇒ ϕ, OBRA will generate
three arguments. The first two arguments are the quantification binders x1 and
x2 that turn the universal quantification of the relational assertion into a lambda
abstraction in the classic “propositions as types” [?] style. The third argument
captures the assumption ϕx, it is named as the combination of the names of
the two quantified variables, i.e. x1x2, and we call it relational argument. The
type of the relational argument depends on the types of the arguments it relates.
For example, in the refinement type of mapRmap , the relational argument for the
list arguments xs1 and xs2 is xs1xs2:{len xs1 ≤ len xs2}, which is a short-
hand for {() | len xs1 ≤ len xs2}. The relational argument for the function
arguments f1 and f2 is itself a function. In general, relations on non functional
arguments are captured by a refined unit type. Relations on functional arguments



are captured by a function that has three arguments, two for the arguments of
the related functions and one for the relation between them. The generation
of the unary theorem proceeds until it reaches the non-quantified base case of
the relational assertion, which is encoded as a refined unit type. Note that, this
encoding of the relational assertion as a unary type eliminates all the relational
quantifiers, thus the derived refinement type belongs in the decidable logic of
Liquid Haskell. The relational to unary translation is formalized in § 3.4.

The Unary Proof Term Next, let’s see how one can prove the mapRmap property.
The below Haskell definition gets accepted by Liquid Haskell, i.e. providing
a proof of the mapRmap property.
mapRmap f1 f2 f1f2 [] [] xs1xs2 = ()

mapRmap f1 f2 f1f2 [] (x:xs) xs1xs2 = () ? map f2 xs

mapRmap f1 f2 f1f2 (x:xs) [] xs1xs2 = ()

mapRmap f1 f2 f1f2 (x:xs) (y:ys) xs1xs2 = mapRmap f1 f2 f1f2 xs ys ()

(?) :: x:a → b → { v:a | x == v }

x ? _ = x

We split four cases comparing the structure of the input lists. In the first case
both lists are empty, because Liquid Haskell knows that map f [] = [] and
len [] = 0, the property holds trivially. Trivial proofs are encoded using the
() value and are automated using Liquid Haskell’s SMT-logic and restricted
function unfolding (via the PLE algorithm [?]). In the second case we need to
prove that 0 ≤ len (map f2 (x:xs)). There, the missing piece for the proof is
that the length of map f2 xs is non-negative and to complete the proof we need
to write the expression map f2 xs and let Liquid Haskell infer its properties.
This help is provided by the question mark operator ? which strengthens the
proof environment. The third case is trivial, since the assumption len (x:xs)

≤ len [] is a contradiction under which the property holds. The last case is
completed by an inductive call to mapRmap , with a trivial proof as its last argu-
ment. Thus the proof is complete.

The Generated Proof Term OBRA generates a proof term for the mapRmap the-
orem that is similar to the above. Before presenting the proof term, we need to
emphasize an integral feature of how refinement type checking operates. Unlike
type theory style theorem provers, Liquid Haskell is an SMT-based verifier,
meaning that the proof term will type check, if the SMT is given enough infor-
mation to decide the property. Taking this into account, OBRA’s automatically
generated terms collect all the information gathered by the two related terms,
even if they are not required to show the validity of the property.

The generated proof term for mapRmap is verbose, but has the same structure
and contains the same information as the previous, user-defined proof.
mapRmap f1 f2 f1f2 xs1 xs2 xs1xs2

= case xs1 of

[] → case xs2 of

[] → () ? [] ? []

x2 : xs2 → () ? [] ? (f2 x2 : map f2 xs2)



x1 : xs1 → case xs2 of

[] → () ? (f1 x1 : map f1 xs1) ? []

x2 : xs2 →
(\x1 x2 x1x2 x3 x4 x3x4 → () ? x1x2 ? x3x4 ? (x1:x3) ? (x2:x4))

(f1 x1) (f2 x2) (f1f2 x1 x2 (() ? x1 ? x2))

(map f1 xs1) (map f2 xs2)

(mapRmap f1 f2 f1f2 xs1 xs2 (() ? xs1 ? xs2))

The proof case splits on the four potential structures of the input lists. In the first
three cases,OBRA ensures that all the subexpressions that appear in the related
expressions, e.g. f2 x2:map f2 xs, [], etc., appear in the proof. In the last case,
generated by the ruleT-App of fig. 3, a lambda abstraction strengthens the proof
environment with both the higher-order relational argument and the inductive
hypothesis, both fully applied. The proof term is machine generated, thus it is
verbose, but it is validated by Liquid Haskell. The complete generation rules
are presented in § 3 and follow the program product method of [?].

2.3 Oracle-based Proofs

In many cases (5 out of the 12 benchmarks in table 1), synchronous rules are not
sufficient to prove the relational property. This happens when the two related
programs have different control flows. For example, let’s compare map to filter :

filter :: (a → Bool) → [a] → [a]

filter _ [] = []

filter f (x:xs) = if f x then x : filter f xs else filter f xs

Now we can revisit the relational property of map and filter , from § 1:
relational filter ~ map :: (Int → Bool) → [Int] → [Int]

~ (Int → Int) → [Int] → [Int]

| ∀f1 ∼ f2. (true ⇒ true) ⇒ ∀xs1 ∼ xs2. len xs1 ≤ len xs2

⇒ len (r1 f1 xs1) ≤ len (r2 f2 xs2)

The above property of length inequality preservation holds, but its proof
is not possible using only synchronous rules. Thus, OBRA will translate the
relational signature to a refinement type that is equivalent to the relational
property, and will also provide an inhabitant of this type that is “incomplete”
because the inductive step is proved by calling the below lemma oblig:

oblig :: f1:(Int → Bool) → f2:(Int → Int) → (Int → Int → () → ())

→ x1:Int → xs1:[Int] → x2:Int → xs2:[Int]

→ xs1xs2:{len (x1:xs1) ≤ len (x2:xs2)}

→ {len (filter f1 (x1:xs1)) ≤ len (map f2 (x2:xs2))}

The generated proof term is similar to the mapRmap proof term in that it also
has four cases and the three cases follow the same pattern. The difference is that
in the last case, i.e. when both lists are non-empty, the structure of the filter

and map expressions is different thus no synchronous rule can be applied. In this
case (rule T-Obl of fig. 4), OBRA generates a call to the oblig lemma.

Generation of Obligations The obligation is an expression that proves the miss-
ing requirement. In our example, an expression that proves that len (filter

f1 (x1:xs1)) ≤ len (map f2 (x2:xs2)). This proof can be done in the current



proving environment, i.e. using all the arguments of filterRmap , the inductive
hypothesis, and the variables introduced by the case splitting. For user inter-
activity, instead of requiring an in-place proof, OBRA captures this current
proving environment as arguments of the obligation lemma and asks the user to
complete the proof, without the need to understand the complete proof term.

In this example, the user can complete the proof manually, as follows:
oblig f1 f2 f1f2 x1 xs1 x2 xs2 xs1xs2 =

if f1 x1 then filterRmap f1 f2 f1f2 xs1 xs2 ()

else filterRmap f1 f2 f1f2 xs1 xs2 ()

The body of the obligation handles the structural difference between filter

and map, namely the branching that is only present in filter . In the case of the
branching when f1 x1 is true, both filter and map append a new element to
the recursive results. Hence, the property is reduced to the comparison between
lengths len (filter f1 xs1) ≤ len (map f2 xs2). This holds by the inductive
hypothesis filterRmap which concludes the proof. In the other case, only map

appends the element to the list, while filter skips the element for which f1 x1

is false. The same inductive hypothesis can be used here to show that len

(filter f1 xs1) ≤ len (map f2 xs2) and thus len (filter f1 xs1) ≤ len

(map f2 xs2) + 1 which is the desired property in the second case.

2.4 OBRA Workflow

Fig. 1: OBRA workflow. RA is relational

analysis, UA is unary refinement type check-

ing, e.g. Liquid Haskell, and O is the or-

acle, e.g. a user.

Figure 1 presents the workflow of
OBRA that given a pair of expres-
sions e1 ∼ e2 and a relational prop-
erty ϕ interacts with an oracle to
decide if the pair satisfies ϕ. First,
OBRA is using a relational analysis
system (RA; which is essentially the
synchronous subset of RHOL) to gen-
erate a unary refinement type u, a
unary proof term e, and a set of proof
obligations O. Second, a unary analy-
sis system (UA; e.g. Liquid Haskell)
is used to check that e has type u. In
this step also, OBRA interacts with
the oracle to provide inhabitants for
the proof obligations O. The final re-
sult of OBRA is the result of UA.

The translation is designed so that e has type u, so when the proof obligations
O are empty, i.e. in synchronous proofs, OBRA is automatic.

In § 3.4 we show that if the oracle has the proof power of higher-order logic,
then OBRA is equivalent to RHOL. Yet, compared to RHOL, OBRA is al-
gorithmic and reduces to a quantifier-free, unary refinement type checking. We
claim that this reduction generates proof obligations that are simpler than the
original relational property and thus, the proof effort is reduced. To evaluate



Constants c ::= true | false | () | i ∈ Z | +,−, ∗, /,=,∧,¬ | nilt | const
Expressions e, p ::= c | x, f, o, r1, r2 ∈ V | let x = e in e | rec f = (λx.e) : t

| λx : t.e | e x | if x then e else e | case x {nil 7→ e; cons x x 7→ e}
Base types b ::= unit | bool | int | list t

Unrefined types t, s ::= b | t→ t
Refined types u, v ::= b{ν :p} | x :u→ u

Assertion ϕ, ψ ::= p | ∀x1 : t1, x2 : t2.ϕ⇒ ϕ
Environments

Typing Γ ::= ∅ | Γ;x : t
Relational Φ ::= ∅ | Φ;x1∼x2 : t1∼ t2 | ϕ

Refined R ::= ∅ | R;x :u
Translation T ::= ∅ | T;x1∼x2 ; x
Obligation O ::= ∅ | O;R ⊢ o : u

Fig. 2: Syntax of λOBRA.

this claim, in § 4, we use OBRA to prove 12 relational properties and conclude
that OBRA can automatically prove 58% of them and reduces the proof effort
by 36% in lines of code compared to the unary proofs of the same properties.

3 Formalization of OBRA

Here, we formalize OBRA as the core calculus λOBRA that is relational, syn-
chronous, bidirectional, and SMT-aided. § 3.1 and § 3.2 respectively present the
syntax and typing rules of λOBRA. In § 3.3 we translate λOBRA to a unary, refined
system. Finally, in § 3.4 we prove that λOBRA is equivalent to the sound RHOL.

3.1 Syntax

Figure 2 introduces the syntax of λOBRA. We define expressions, unrefined and
refined types, assertions, and five environments. We use magenta color for
elements of the language that only appear in the translation, described in § 3.3.

Constants in λOBRA include booleans, unit, integers and operators for arith-
metic (+,−, ∗, /), equality (=), and boolean logic (∧ and ¬). Finally, constants
include the type indexed list constructors nilt and const.

Expressions include constants and variables, including the special relational
variables r1 and r2 and variables o that capture proof obligations. Expressions
are in A-normal form (ANF), i.e. function arguments and branching conditions
must be variables. Recursive and lambda functions are type annotated.

Types of λOBRA are either unrefined or refined. Unrefined types t, s can either
be the base types b, that is, unit, boolean, integer, and list or function types. In
refined types u, v the base type b{ν :p} is refined by a predicate p that comes from
the language of expressions and in the function type x :ux → u the argument
is bound by a variable x that is used in the refinement of the return type u.



Notation: We use an unrefined type to denote the corresponding refined type
with only true refinements, e.g. unit is shorthand for unit{ν : true}.

Assertions ϕ, ψ are logical predicates that encode relational properties. As
such, they are always quantified by two typed variables x1, x2 that represent the
two sides of the relation. The body of the assertion is an implication and its base
case a boolean expression. Since two expressions can be related by two unary
types and an assertion, we call the triplet t1∼ t2 | ϕ a relational type. Notation:
We write ∀x1x2.ϕ⇒ ψ for ∀x1 : t1x2 : t2.ϕ⇒ ψ when the types are implied.

λOBRA has five environments. The typing environment Γ binds variables to
unrefined types x : t and the refined environment R binds variables to refined
types x :u. The relational environment Φ binds the pair of variables x1∼x2 to
their relational type, while the translation environment T binds pairs of variables
to a new variable, that captures their relation. Finally, the obligation environ-
ment O collects a set of obligations, each of which is a unary typing judgment.

Synthesis and Translation Γ |Φ |T ⊢ e1∼e2 ⇒ t1∼ t2 | ϕ + e :u |O

constTy(c1) = t1 constTy(c2) = t2 constPr(t1, t2, r1 = c1 ∧ r2 = c2) = ϕ

Γ |Φ |T ⊢ c1∼c2 ⇒ t1∼ t2 | ϕ + constTr(t1, t2) :trTy(t1, t2) |∅
T-Const

x1∼x2 : t1∼ t2 | ϕ ∈ Φ x1∼x2 ; x ∈ T

Γ |Φ |T ⊢ x1∼x2 ⇒ t1∼ t2 | ϕ + x :⌈ϕ⌉[x1/r1][x2/r2] |∅
T-Var

Γ |Φ |T ⊢ x1∼x2 ⇐ s1∼ s2 | ψ[r1/x1][r2/x2] + et :ut |O2

tt
.
= x1 :s1 → x2 :s2 → xt :ut → u ϕ′ .= ϕ[r1 x1/r1][r2 x2/r2]

Γ |Φ |T ⊢ e1∼e2 ⇒ s1 → t1∼ s2 → t2 | ∀x1 :s1,x2 :s2.ψ ⇒ ϕ′ + e : tt |O1

Γ |Φ |T ⊢ e1 x1∼e2 x2 ⇒ t1∼ t2 | ϕ + e x1 x2 et :u |O1,O2

T-App

Fig. 3: Relational Typing Synthesis and Translation.

3.2 RA: Relational Algorithmic Typing

OBRA’s main typing judgment Γ | Φ |T ⊢ e1 ∼ e2 ⇐ t1 ∼ t2 | ϕ + e :u |O
checks that under the typing environment Γ and the relational environment Φ,
the expressions e1 ∼ e2 have, resp. types t1 and t2 and satisfy the relational
property ϕ. The judgement further keeps track of the translation environment
T to generate a unary expression e of refinement type u that is equivalent to the
relational property ϕ, assuming the set of proof obligations O holds. For clarity
of exposition, we separate the two functionalities of the judgements. Here, we
describe the relational part of the judgement, in § 3.3 we describe the translation
part (marked with magenta color in the rules and for simplicity omitted in this
subsection), and in § 3.4 we combined them again to prove correctness of OBRA.



Checking and Translation Γ |Φ |T ⊢ e1∼e2 ⇐ t1∼ t2 | ϕ + e :u |O

Γ;x1 :s1;x2 :s2 |Φ;x1∼x2 :ψ |T;x1∼x2 ; x ⊢ e1∼e2 ⇐ t1∼ t2 | ϕ + e :u |O
et

.
= λx1 :s1, x2 :s2, x :trTy(s1, s1).e ϕ′ .= ϕ[r1 x1/r1][r2 x2/r2]

ut
.
= x1 :s1 → x2 :s2 → x :⌈ψ[x1/r1][x2/r2]⌉ → u

Γ |Φ |T ⊢ λx1 :s1.e1∼λx2 :s2.e2 ⇐ s1 → t1∼ s2 → t2 | ∀x1x2.ψ ⇒ ϕ′ + et :ut |O
T-Lam

t1 = sx1 → s1 t2 = sx2 → s2 Def(f1, x1, e1) Def(f2, x2, e2)
Γr |Φr |Tr ⊢ e1∼e2 ⇐ s1∼ s2 | ϕ + e :u |O Γr

.
= Γ; f1 : t1; f2 : t2;x1 :sx1;x2 :sx2

ϕr
.
= ∀y1,y2.(|y1 |, |y2 |) < (|x1 |, |x2 |) ∧ ψ[y1/x1][y2/x2] ⇒ ϕ

Φr
.
= Φ; f1∼f2 :ϕr;x1∼x2 :sx1∼sx2 | ψ Tr

.
= T; f1∼f2 ; f ;x1∼x2 ; x

er
.
= rec f = (λx1 :sx1, x2 :sx2, x :trTy(sx1, sx2).e) : tr
tr

.
= x1 :sx1 → x2 :sx2 → x :⌈ϕ[x1/r1][x2/r2]⌉ → u

ϕt
.
= ∀x1 :sx1,x2 :sx2.ψ ⇒ ϕ[r1 x1/r1][r2 x2/r2]

Γ |Ψ |T ⊢ rec f1 = (λx1.e1) : t1∼rec f2 = (λx2.e2) : t2 ⇐ t1∼ t2 | ϕt + er : tr |O
T-Rec

Γ |Φ |T ⊢ ex1∼ex2 ⇒ s1∼ s2 | ψ + ex :ux |O1 et
.
= let (x1, x2, x) = (ex1, ex2, ex) in e

Γ;x1 :s1;x2 :s2 |Φ;x1∼x2 :s1∼ s2 | ψ |T;x1∼x2 ; x ⊢ e1∼e2 ⇐ t1∼ t2 | ϕ + e :u |O2

Γ |Ψ |T ⊢ let x1 = ex1 in e1∼let x2 = ex2 in e2 ⇐ t1∼ t2 | ϕ + et :u |O1,O2

T-Let

Γ |Φ |T ⊢ x1∼x2 ⇒ bool∼ bool | p + x :ux |Ox

Γ |Φ;x1∼x2 :bool∼ bool | p ∧ x1 ∧ x2 |T ⊢ et1∼et2 ⇐ t1∼ t2 | ϕ + ett :u |Ott

Γ |Φ;x1∼x2 :bool∼ bool | p ∧ x1 ∧ ¬x2 |T ⊢ et1∼ef2 ⇐ t1∼ t2 | ϕ + etf :u |Otf

Γ |Φ;x1∼x2 :bool∼ bool | p ∧ ¬x1 ∧ x2 |T ⊢ ef1∼et2 ⇐ t1∼ t2 | ϕ + eft :u |Oft

Γ |Φ;x1∼x2 :bool∼ bool | p ∧ ¬x1 ∧ ¬x2 |T ⊢ ef1∼ef2 ⇐ t1∼ t2 | ϕ + eff :u |Off

et
.
= if x1 then (if x2 then ett else etf ) else (if x2 then eft else eff )

O
.
= Ox,Ott,Otf ,Oft,Off

Γ |Φ |T ⊢ if x1 then et1 else ef1∼if x2 then et2 else ef2 ⇐ t1∼ t2 | ϕ + et :u |O
T-If

Γ |Φ |T ⊢ x1∼x2 ⇒ list s1∼ list s2 | p + e : |Ox

Γt
.
= Γ; y1 :s1; y2 :s1; z1 :list s1; z2 :list s2 Φt

.
= Φ; y1∼y2 : true; z1∼z2 : true

Tt
.
= T; y1∼y2 ; y; z1∼z2 ; z

Γt |Φt;x1∼x2 :p ∧ x1 = nil ∧ x2 = nil |Tt ⊢ en1∼en2 ⇐ t1∼ t2 | ϕ + enn :u |Onn

Γt |Φt;x1∼x2 :p ∧ x1 = nil ∧ x2 = cons y2 z2 |Tt ⊢ en1∼ec2 ⇐ t1∼ t2 | ϕ + enc :u |Onc

Γt |Φt;x1∼x2 :p ∧ x1 = cons y1 z1 ∧ x2 = nil |Tt ⊢ ec1∼en2 ⇐ t1∼ t2 | ϕ + ecn :u |Ocn

Γt |Φt;x1∼x2 :p ∧ x1 = cons y1 z1 ∧ x2 = cons y2 z2 |Tt ⊢ ec1∼ec2 ⇐ t1∼ t2 | ϕ + ecc :u |Occ

et
.
= case x1 {nil 7→ etn; cons y1 z1 7→ etc}

etn
.
= case x2 {nil 7→ enn; cons y2 z2 7→ enc}

etc
.
= case x2 {nil 7→ ecn; cons y2 z2 7→ ecc}

O
.
= Ox,Onn,Onc,Ocn,Occ

Γ |Φ |T ⊢ case x1 {nil 7→ en1; cons y1 z1 7→ ec1}
∼ case x2 {nil 7→ en2; cons y2 z2 7→ ec2} ⇐ t1∼ t2 | ϕ + et :u |O

T-Case

Γ |Φ |T ⊢ e1∼e2 ⇒ t1∼ t2 | ψ + e : |O Γ | Φ ⊢ t1∼ t2 | ψ ≺: ϕ

Γ |Φ |T ⊢ e1∼e2 ⇐ t1∼ t2 | ϕ + e :⌈ϕ⌉[e1/r1][e2/r2] |O
T-Sub

no other rule applies Γ ⊢ e1 : t1 Γ ⊢ e2 : t2 fresh o u = ⌈ϕ[e1/r1][e2/r2]⌉
Γ |Φ |T ⊢ e1∼e2 ⇐ t1∼ t2 | ϕ + o :u |O; ⌈Γ;Φ;T⌉ ⊢ o : u

T-Obl

Fig. 4: Relational Typing Checking and Translation.



Subtyping Γ | Φ ⊢ t1∼ t2 | ψ ≺: ϕ

SmtValid((|Φ|) ⇒ (|p1|) ⇒ (|p2|))
Γ | Φ ⊢ b1∼ b2 | p1 ≺: p2

S-Base

Γ | Φ ⊢ tx1∼ tx2 | ϕx[r1/x1][r2/x2] ≺: ψx[r1/x1][r2/x2]
Γ;x1 : tx1;x2 : tx2 | Φ;x1∼x2 :ϕx ⊢ t1∼ t2 | ψ ≺: ϕ

Γ | Φ ⊢ x1 : tx1 → t1∼x2 : tx2 → t2 | ∀x1 : tx1,x2 : tx2.ψx ⇒ ψ[r1 x1/r1][r2 x2/r2]
≺: ∀x1 : tx1,x2 : tx2.ϕx ⇒ ϕ[r1 x1/r1][r2 x2/r2]

S-Fun

Fig. 5: Relational Subtyping.

Figures 3 and 4 present the rules of OBRA which are a bidirectional and
synchronous variant of RHOL [?]. If the translation is ignored, our rules
comprise a subset of RHOL: a weakening rule as well as all synchronous (two-
sided) rules. Our branching (rule T-If) and pattern-matching (rule T-Case)
rules are modified to be more permissive. That is, the T-If rule has 5 premises,
one that derive the guard predicate p, and 4 that handle the four possible cases
of the guard, unlike RHOL, where the cases of the guard should match. The
same applies to the T-Case rule that has 5 cases in OBRA and 3 cases in
RHOL. This design choice allows us to type more programs while maintaining
the system syntax-directed. Both rules are still derivable in RHOL.

Unlike RHOL, our rules are bidirectional [?], namely the typing judgment
is split into two judgments: type synthesis Γ |Φ ⊢ e1∼ e2 ⇒ t1∼ t2 | ϕ in fig. 3
and typechecking Γ |Φ ⊢ e1 ∼ e2 ⇐ t1 ∼ t2 | ϕ in fig. 4. Both of the judgments
establish that type t1 ∼ t2 | ϕ can be assigned to a pair of expressions e1 ∼ e2
under Γ and Φ. Our bidirectional system is in the spirit of unary refinement
types [?], which enabled decidable checking of properties within quantifier-free
logic of linear arithmetic and uninterpreted functions (QF-EUFLIA) [?].

The second property of our system is that it is synchronous. All checking and
synthesis rules of our system assume the same syntactic structure of expressions
on the left- and right-hand side, e.g. it is possible to relate two variables or two
lambda-expressions, but not a lambda to a variable.

Relational Subtyping Figure 5 describes relational subtyping. Informally, the
judgment Γ | Φ ⊢ t1∼ t2 | ψ ≺: ϕ states that the relational type t1∼ t2 | ϕ is less
specific than the type t1∼ t2 | ψ, i.e. two expressions related by t1∼ t2 | ψ could
also be related by t1∼ t2 | ϕ with some loss of information.

Rule S-Base applies to base types related by quantification-free predicates p1
and p2. In the premise, an SMT-automated procedure checks that the predicate
p1 implies p2 under the quantifier-free interpretation of the relational environ-
ment Φ. To get this interpretation, we conjunct all the predicates of the base



types in Φ, after substituting the aliases r1 and r2 with the variables x1 and x2:

(|Φ|) .=
∧

{(|p[x1/r1][x2/r2]|) | x1∼x2 :b1∼ b2 | p ∈ Φ}

To ensure SMT-decidable implication checking, we further use a logical embed-
ding for the predicates that substitutes the functions and the recursive definitions
with uninterpreted functions and is a homomorphism for all other cases:

(|λx : t.e|) .= f (|rec f = (λx.e) : t|) .= f (|e x|) .= (|e|) x . . .

Rule S-Fun follows the contravariant behavior of function types, where the
relational variables r1 and r2 are substituted to capture the related types.

Relational Type Synthesis Figure 3 summarizes the rules of relational type syn-
thesis. Rule T-Var fetches the relation between the variables from the relational
environment and rule T-App handles function application. Rule T-Const pro-
duces a relational type for two constants of compatible types. The function
constTy returns the type of a constant. To both check the type compatibility of
the constants and generate the relational predicate the T-Const rule uses the
partial function constPr that is defined as follows:

constPr(b1, b2, p)
.
= p

constPr(tx1 → t1, tx2 → t2, p)
.
= ∀x1x2.constPr(tx1, tx2, true) ⇒ constPr(t1, t2, p)

For two base types, constPr produces a trivial predicate r1 = c1 ∧ r2 = c2 that
says that the constants are equal to themselves. For a pair of function types,
constPr generates fresh variables x1, x2 to bind the arguments and inductively
calls itself on the argument types with the predicate true. In the return types
of the inductive call the predicate p is unchanged. When the two types do not
have the same structure, the function is undefined, thus the T-Const rule fails.

Relational Type Checking Figure 4 presents the type checking mode of the sys-
tem. Rule T-Lam validates a pair of functions against the relation ∀x1x2.ψ ⇒ ϕ.
We propagate ϕ to a checking judgment between the bodies e1 and e2 while ex-
tending the environments Γ and Φ with the assumptions about the arguments.
In a similar manner, rule T-Rec handles definitions of recursive functions f1 and
f2. We add f1 and f2 to the typing environment and extend Φ with a relational
inductive hypothesis f1∼f2 | ∀x1x2.ψ ⇒ ϕ. For brevity, we omit the respective
types s1 → t1 and s2 → t2 of f1 and f2 from the full syntax of relational typing.
As in RHOL, the rule requires that the recursive functions terminate using the
predicate Def that verifies that the function’s domain is an inductive type or an
integer and that the recursive call is made on a smaller argument.

Rule T-If analyses synchronous branching on x1 and x2 in the two compared
programs respectively. There are four possible scenarios: conditions in both pro-
grams pass, only the condition on the left passes while the right one fails, only
the right condition passes, and both conditions fail. In each of the cases, the
rule preserves any additional relation p that was known about x1 and x2 prior



to branching. All in all, the rule has five premises, the first of which is used to
synthesize p. In the other four premises, the rule extends Φ with an assumption
about x1 and x2 in which p gets strengthened by the (un)satisfied branching con-
ditions. Then, the rule contraposes the branches of the two programs according
to the triggered conditions. Finally, it checks that all four resulting configura-
tions conform to the relation ϕ. The premises of the rule T-Case comprise a
very similar cross-product, but on the list constructors nil and cons instead of
the booleans true and false. In the premises that correspond to the matching of
pattern cons y1 z1 (or resp. cons y2 z2), the binders for the head y1 (resp. y2)
and the tail z1 (resp. z2) of the list are added to the typing environment Γ.

Rule T-Let compares two let-expressions and rule T-Sub ascribes t1∼ t2 | ϕ
to e1 and e2 as long as ϕ subsumes the relation ψ, produced by synthesis.

Finally, rule T-Obl is used when no other rule applies and its only premises
Γ ⊢ e1 : t1 and Γ ⊢ e2 : t2 require that the expressions have the correct unrefined
types. Using relational type checking alone, i.e. while ignoring the translation,
this rule is not correct, since the assertion ϕ is totally ignored. Essentially, reach-
ing this rule means that the relational rules of OBRA failed and an oracle, called
via the translation mechanism, is needed to prove the relational property.

3.3 OB: Oracle-Based Translation

Now, we revisit the OBRA judgment Γ |Φ |T ⊢ e1 ∼ e2 ⇐ t1 ∼ t2 | ϕ + e :u |O
with a focus on the magenta translation-related parts. Intuitively (as formalized
in § 3.4), the judgement generates an expression e, a refinement type u, and a set
of obligations O; the expression e has type u and the obligations O are satisfiable
if and only if the expressions e1 ∼ e2 satisfy the relational predicate ϕ. The
output e, also known as program product [?], combines e1 and e2 into a common
control flow that simulates the simultaneous execution of the two programs.
Similarly, we produce a proof of the relational property that is sensitive to mutual
branching and case-splitting in the compared expressions.

The crux of the translation is the ruleT-Obl. When nothing else can be done,
T-Obl generates a refinement type u that translates the relational predicate
ϕ. To turn assertions into refinement types, we follow [?,?] and turn forall-
quantification and implication into functional arguments, and boolean predicates
into refinements of the unit type, using the function ⌈ϕ⌉:

⌈p⌉ .
= unit{ν :p} ⌈∀x1 : t1, x2 : t2.ψ ⇒ ϕ⌉ .

= x1 : t1 → x2 : t2 → x :⌈ψ⌉ → ⌈ϕ⌉

The translated refinement type is added to the set of obligations O with a fresh
obligation variable o under a refinement environment that captures the current
state of the translation. The definition of o should be later (fig. 6) guessed by
the oracle. To capture the state of the translation, we use the operator ⌈Γ;Φ;T⌉
that returns a refinement type environment as follows:

⌈Γ;Φ;T⌉ .
= { x1 : t1, x2 : t2, x : ⌈ϕ[x1/r1][x2/r2]⌉ | x1∼x2 ; x ∈ T,

x1 : t1 ∈ Γ, x2 : t2 ∈ Γ, x1∼x2 :ϕ ∈ Φ}



Namely, for each binding x1∼x2 ; x in the translation environment T, we add
the bindings x1 : t1, x2 : t2, x : ⌈ϕ⌉ to the refinement type environment, where
the types of the variables x1 and x2 are taken from the typing environment Γ
and the relation between them from the relational environment Φ.

In the implementation, the refinement type environment is turned into ar-
guments of the proof term e. For example, in the filterRmap example of § 2.3,
the proof function obligation contains all the relevant arguments in the proof
environment, while relational arguments with true refinements are omitted.

Translation Rules Figures 3 and 4 present the the translation rules, which are
combined with the relational typing.

Rule T-Var looks up the translated expression from the context — that
exactly translates a pair of variables to a unary variable — and generates the
translated type by lifting the relational property to a unary type.

Rule T-Const produces a proof term constTr(t1, t2) that proves ϕ. By the
definition of constPr, ϕ is equivalent to r1 = c1 ∧ r2 = c2 which trivially holds
when r1 is in fact c1 and r2 is c2. However, to be compatible with the rest of
the translation, we generate a proof via constTr(t1, t2):

constTr(b1, b2)
.
= ()

constTr(tx1
→ t1, tx2

→ t2)
.
= λx1 : tx1

, x2 : tx2
, x :trTy(tx1

, tx2
).constTr(t1, t2)

trTy(b1, b2)
.
= unit

trTy(tx1
→ t1, tx2

→ t2)
.
= tx1

→ tx2
→ trTy(tx1

, tx2
) → trTy(t1, t2)

The function constTr is defined inductively. For constants of base types, it re-
turns a trivial unit proof. Constants of function types are translated to lambda
expressions with three arguments: the initial x1 and x2, and the relational ar-
gument x that carries the proof of a relational precondition about x1 and x2.
The unary type u of the proof terms is constructed by trTy which is defined
inductively and converts two base types into a unit. Two function types become
a function type with three arguments: the initial x1 and x2, plus their relation.

Rule T-App translates function applications and is using a third argument et
that relates the two arguments. Dually, rule T-Lam handles lambda-abstractions
and it composes two lambda functions into a new lambda with three arguments.
Rule T-Rec translates the recursive functions f1 and f2 to a new recursive
function f and it adds the fresh symbol f to the relational context. Similarly,
rules T-Let, T-If, and T-Case translate let-bindings, if-then-else, and case-
expression respectively, by combining the two expressions into a single expression
and generating the proof of the relation between them. Finally, rule T-Sub
propagates the translated proof to the weaker property.

In short, the judgement Γ |Φ |T ⊢ e1 ∼ e2 ⇐ t1 ∼ t2 | ϕ + e :u |O turns the
property ϕ into a unary refined type u, following “propositions as types” [?], and
generates a proof term e that proves ϕ. The term e may be open because it can
contain some obligation variables that should be guessed by an oracle.



∅ =| ∅
O-Emp

O =| θ ∃eo.R ⊢ eo : u

O;R ⊢ o : u =| θ, [eo/o]
O-Var

Γ |Φ |T(Φ) ⊢ e1∼e2 ⇐ t1∼ t2 | ϕ + e :u |O O =| θ ⌈Γ;Φ⌉ ⊢ θ · e : u
Γ |Φ ⊢OBRA e1∼e2 : t1∼ t2 | ϕ

T-OBRA

Fig. 6: OBRA type checking.

3.4 Metatheory of OBRA

We combine the type checking rules of §3.2 with the translation of § 3.3 to design
OBRA as an oracle-based, relational, algorithmic type checker that behaves as
RHOL. Here, we describe OBRA and claim that it is equivalent to RHOL
(theorem 1), the proofs are in the supplementary material.

Figure 6 presents the rule that designs the OBRA system. To check that
the expressions e1∼e2 satisfy the relational refinement type t1∼ t2 | ϕ, OBRA
has only one rule, T-OBRA, that performs three steps. First, it is using the
bidirectional translation to generate the translated expression e, the unary type
u, and the environment of proof obligations O. Next, it checks that the proof
obligations O are satisfiable. The relation O =| θ checks that the proof obligations
O are satisfiable and returns a model, i.e. a substitution θ that maps each proof
obligation variable to a witness expression: θ ::= ∅ | θ, [e/o]. Satisfiability of O is
defined by the two inductive rules O-Emp and O-Var that ensure, using unary
refinement typing, that the model θ is indeed a valid witness. The final check
ensures that the expression θ · e, i.e. the expression e under the substitution θ,
indeed has the translated type u under the typing environment Γ refined with
the relational predicates in Φ. In the absence of a translation environment, we
turn the relational environment into a refined environment as follows:

⌈Γ;Φ⌉ .
= ⌈Γ;Φ;T(Φ)⌉ T(Φ)

.
= {x1∼x2 ; x | x1∼x2 :ϕ ∈ Φ, fresh x}

Equivalence with RHOL Soundness of OBRA is shown by equivalence toRHOL,
a relational type system that is sound and equivalent to HOL [?].

Let Γ |Ψ ⊢RHOL e1∼e2 : t1∼ t2 | ϕ be the RHOL judgment. The judgment
is very similar to OBRA apart from that it is keeping track of an assertion
environment Ψ instead of our relational environment Φ. We define the operation
⌊·⌋ that converts a relational environment to a set of assertions:

⌊∅⌋ .
= ∅ ⌊Φ;x1∼x2 :ϕ⌋

.
= ⌊Φ⌋;ϕ[x1/r1][x2/r2]

With this, we state soundness and completeness of OBRA w.r.t. RHOL.

Theorem 1. OBRA is equivalent to RHOL:

1. If Γ |Φ ⊢OBRA e1∼e2 : t1∼ t2 | ϕ, then Γ | ⌊Φ⌋ ⊢RHOL e1∼e2 : t1∼ t2 | ϕ.
2. If Γ | ⌊Φ⌋ ⊢RHOL e1∼e2 : t1∼ t2 | ϕ, then Γ |Φ ⊢OBRA e1∼e2 : t1∼ t2 | ϕ.



Table 1: Summary of Benchmarks. Toy are toy examples and Tick are the relational
benchmarks of [?]. Code is the number of lines of executable code. In Unary columns,
Spec is the number of lines of the refinement type specification and Proof is the
number of lines of code to verify the specification. In Relational columns, Spec is the
number of lines of the relational specification, User is the number of lines of code to
verify the proof obligations, and Auto is the number of lines of auto-generated code.

Benchmark Code
Unary Relational

Spec Proof Spec User Auto

T
o
y

Increment 3 2 1 3 0 17
Map 15 10 9 6 0 36
Filter map 6 3 16 5 16 29
Higher-order map 12 8 16 6 16 29

T
i
c
k

2D count 22 2 21 9 0 113
Binary counters 36 5 45 19 0 60
Boolean expressions 35 1 27 4 21 257
Constant-time comparison 13 5 1 4 0 112
Memory allocation 22 1 1 3 0 50
Insertion Sort 39 3 90 5 90 44
Merge sort 30 6 73 5 52 186
Square and multiply 14 8 9 9 0 240

Total 247 54 309 78 195 1173

4 Evaluation

We implemented OBRA as an extension to Liquid Haskell. Concretely, we
added two new features. First, the keyword relational allows the user to ascribe
relational signatures to functions. OBRA will verify these signatures using the
rules of § 3. The second feature is the flag -- relational -hints, which tells
Liquid Haskell to generate unary proof templates from relational signatures.

Benchmarks Table 1 evaluates our implementation using two sets of benchmarks.
The first set, Toy, contains small examples like the Map and Filter map pre-
sented in § 2. Increment asserts the monotonicity of the increment function and
Higher-order map tests function mapping with bounded differences. The second
set, Tick, contains all the relational benchmarks from [?]. 2D count compares
two implementations of a 2D count function. Binary counters asserts that if
two boolean lists are dual, then incrementing and decrementing them would
result in the same cost and a dual value. Boolean expressions compares two
implementations of a boolean expression evaluator. Constant-time comparison

asserts that a cryptographic safe function that compares an input with a secret
password, has the same cost for inputs of the same length. Memory allocation

compares memory usage between lazy and forced evaluation. Insertion sort

and Merge sort both assert that the difference of the cost of sorting two lists
is bounded by the difference of the number of unsorted elements in the lists. Fi-



nally, Square and multiply asserts that the difference of the cost of two square
and multiply runs is bounded by the difference of their list inputs.

Code Size Table 1 summarizes the number of lines of code (LoC) required for
unary and relational verification. The Code column contains the number of
lines of executable code, used both for the unary and relational verification.
Spec is the number of lines required to express the main specification. In total,
the relational specifications (78 LoC) are more verbose than the unary ones
(54 LoC). This was expected, since in the relational form the types are separated
from the properties. The column Proof contains the user provided LoC that
prove the unary specifications. In the relational case, Auto contains the LoC
automatically generated and User is the LoC the user provided to prove the
generated obligations. Out of the 12 benchmarks, 7 were proved automatically,
i.e. requiring 0 lines of user provided proof code. In all the benchmarks, the
generated proofs are big, totalling 1173 LoC. This proof code is neither optimized
nor is meant to be read by the user. Instead, when user code is required, the
translation is generating top level proof obligations. In the 5 benchmarks that
did require user proofs the user-provided proof size is smaller or equal to proofs
in the unary case. In total the user provided proof code reduced from 309 to 195
LoC, i.e. a reduction of 36%. In short, the relational specifications are a little
more verbose but the lines of user provided proof code is smaller.

Expressiveness Compared to relSTLC ([?]), which is the main implemented
relational system, OBRA offers three key advantages. Firstly, it is more expres-
sive. Unlike relSTLC, which only supports indices-based predicates making it
impossible to express properties required by the Boolean expressions bench-
mark, OBRA supports arbitrary relational properties. Secondly, OBRA gener-
ates unary proofs and provides local error reporting, enabling easier debugging
of relational proofs. Although relSTLC may automatically prove more rela-
tional proofs through heuristics, such as in the merge sort benchmark, it lacks
debugging information when these heuristics fail. Finally, the generated proofs
are checked by Liquid Haskell, increasing confidence in their validity.

5 Related Approaches

Our work is inspired by the rich literature on relational verification of higher-
order programs. System R [?] is an early example of type-based relational verifi-
cation for a polymorphic λ-calculus. However, its focus is limited to parametric-
ity. Information flow typing [?,?] provides another case of type-based relational
verification. However, it is limited to non-interference properties. Another ex-
ample of a relational type system is Fuzz [?] and its dependently typed version
Dfuzz [?]. Fuzz and Dfuzz use a rich system of linear types to reason about
program sensitivity and differential privacy. In the case of DFuzz, types can be
indexed over arithmetic expressions, making the type checking algorithm highly
non-trivial. However, the type systems are syntax-directed (with the obvious
exception of the subtyping rules, for which classic techniques can be used) and



as a consequence typing can be algorithmically reduced to constraint solving
over natural numbers and the reals [?]. RelCost [?] makes a similar use of in-
dexed types to reason about relational cost. In contrast to sensitivity, which can
be proved for many examples without the use of non-synchronous rules, relative
cost requires asynchronous rules, which are therefore an integral part of RelCost.
This makes algorithmic typing for RelCost challenging. Nevertheless, [?] devel-
ops mechanisms to perform algorithmic typing, at the cost of losing completeness
w.r.t. the declarative type system. Our approach avoids losing completeness, by
generating proof obligations that need to be discharged in a unary type system.

The first general purpose relational logic for higher-order (stateful) programs
is Relational Hoare Type Theory (RHTT) [?]. RHTT is implemented within the
Coq proof assistant, giving its users great flexibility to interleave synchronous
and asynchronous reasoning. To our best knowledge, the problem of algorithmic
verification for RHTT has not been studied. Another example of general-purpose
relational type system is rF∗ [?]. rF∗ is built on top of F∗ [?], and follows sim-
ilar principles. Type-checking generates proof obligations that are delegated to
SMT-solvers. One limitation of rF∗ is that it is primarily restricted to syn-
chronous reasoning. In contrast, our approach allows combining synchronous
and asynchronous reasoning via the generation of proof obligations.

Our work is most closely related to Relational Higher-Order Logic (RHOL) [?].
RHOL differs from previously mentioned approaches by imposing a stratification
between computations, that are expressed in a type system, and properties, that
are expressed in a higher-order logic over the type system. The stratification is
key for achieving soundness and completeness w.r.t. standard HOL. Our work
allows us to combine expressiveness of RHOL with algorithmic verification that
comes for free with other approaches. There are several extensions of RHOL,
in particular with probabilities [?] and monadic cost RC [?]. Like RHOL, these
systems are not supported by algorithmic verification.

An alternative approach is to carry out relational reasoning using an extrinsic
proof approach. In this approach, relational properties are captured as non-
relational properties, typically over unit types, and the proofs are constructed
manually relying on a proposition-as-types encoding customized to the language
at hand. This is the approach used in [?] for F⋆ and in [?] for Liquid Haskell.
The latter work was later extended to probabilistic computations in [?]. Our
work builds upon [?] by providing additional automation while similarly using
SMT-aided refinement types to reason about quantitative specifications.

6 Conclusion

OBRA is an oracle-based, relational, algorithmic type checker that proves rela-
tional properties of higher-order, functional programs. We formalized OBRA as
a core calculus, λOBRA, and proved it equivalent to RHOL. Further, the system
automatically translates relational properties to unary theorems with a proof
template. We implemented OBRA as an extension of Liquid Haskell and
evaluated it on 12 benchmarks and out of which 7 were proved automatically.
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