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Abstract

We explore how to approximate large elimination and indexed datatypes in refinement
type systems with a non-dependent base type system.

Introduction. At the core of modern dependent type theories [2], indexed inductive types
and large elimination are the main means of how new datatypes are introduced. They also play
a vital role in the kind of theorems that are provable in our theory. As an example, removing
large elimination from MLTT [4] causes the loss of the ability to prove the disjointness of
constructors [5]. This makes the theory unable to prove trivial theorems; for example, we
cannot show that ⇧(Eq(Bool, true, false), V oid) is inhabited.

Refinement types as implemented in Liquid Haskell [8, 9] extend the type system of Haskell,
SystemFC, with logical predicates. These predicates are Haskell (terminating) boolean expres-
sions and operators that belong to the decidable fragment of SMT-Lib.

As refinement type systems lack direct support for large elimination and indexed datatypes,
their absence makes it challenging to encode certain proofs and datatype definitions. In this
work, we explore how to approximate these features within the refinement type system. As a
running example, we translate the correct compiler of STLC to the SKI calculus presented in
[6] from Agda [7] to Liquid Haskell.1

data Term : Ctx ! Ty ! Set where
app : 8 {� � ⌧} ! Term � (� ) ⌧)

! Term � � ! Term � ⌧
lam : 8 {� � ⌧} ! Term (� :: �) ⌧

! Term � (� ) ⌧)
var : 8 {� �} ! Ref � � ! Term � �

(a) Agda definition

data Term where
{-@ App :: �:Ctx ! �:Ty ! ⌧:Ty

! Prop (Term � (Arrow � ⌧))
! Prop (Term � �)
! Prop (Term � ⌧) @-}

App :: Ctx ! Ty ! Ty ! Term ! Term
! Term

{-@ Lam :: �:Ctx ! �:Ty ! ⌧:Ty
! Prop (Term (Cons � �) ⌧)
! Prop (Term � (Arrow � ⌧)) @-}

Lam :: Ctx ! Ty ! Ty ! Term
! Term

{-@ Var :: �:Ctx ! �:Ty
! Prop (Ref � �)
! Prop (Term � �) @-}

Var :: Ctx ! Ty ! Ref ! Term
data TERM = Term Ctx Ty

(b) Liquid Haskell definition

Figure 1: Well-typed STLC terms definition

1The full translation can be found at https://github.com/ucsd-progsys/liquidhaskell/blob/develop/
tests/ple/pos/SKILam.hs.
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data Ty : Set where
◆ : Ty
_)_ : Ty ! Ty ! Ty

Value : Ty ! Set
Value ◆ = Z
Value (� ) ⌧) = Value � ! Value ⌧

(a) Agda definition

data Value where
{-@ VIota :: Int ! Prop (Value Iota) @-}

VIota :: Int ! Value
{-@ VFun :: �:Ty ! ⌧:Ty

! (Prop (Value �) ! Prop (Value ⌧))
! Prop (Value (Arrow � ⌧)) @-}

VFun :: Ty ! Ty ! (Value ! Value)
! Value

data VALUE = Value Ty

(b) Liquid Haskell definition

Figure 2: HOAS representation of values

Indexed Inductive Datatypes. A first solution for the absence of indexed inductive
datatypes was proposed in [1] under the name of data proposition. The idea is to encode
the information and constraints that in the dependently typed world is carried through in-
dexes by refining the constructors of the datatype. In Liquid Haskell, this role is taken by
the Prop type, which is a type alias for the refined type: type Prop e = {v:a | e= prop v.
Here, prop is treated as an uninterpreted function in thelogic and e is substituted by
the index information. Since the logic has no knowledge about prop other than its type, two
types can match only if the arguments passed to Prop are the same. In Figure 1, we see side
by side the datatypes that encode well-typed terms of the simply typed lambda calculus.2

Large elimination. Large elimination instead is trickier as the natural solution would be to
encode it through functions, but unfortunately this is not feasible as functions need to remain
valid Haskell code and types are not part of valid Haskell expressions. A solution could be to
use codes to encode types through codes mimicking the universe level encoding in dependent
types but at the Haskell level there is no way to have a Haskell type depend on a value. The
only possible solution then is to use a datatype declaration indexed by the argument of the
dependent elimination where we have a constructor for each case and in each constructor we
wrap a value of the type returned by the elimination. However this leads to problem when
we construct an arrow type, as the same type will appear in a negative position, and it will
fail to type check. But are these type declaration actually problematic? The type definition
is actually well-founded as the index is structurally decreasing, otherwise the same declaration
would be rejected by Agda. Thus, at least, the usual example showing that negative types
lead to inconsistency does not apply. Another feature obtained via large elimination is non-
uniform dependencies, i.e., functions are able to inspect their argument and change their type
accordingly. The usual example is the type safe sprintf , but this kind of pattern can still be
emulated through indexed families even if in a less elegant manner through sized lists.

In Figure 2 we compare the HOAS representation of values. In the Liquid Haskell translation,
the VFun constructor has the negative occurrences issue.

Completing the Connection. Naturally, we can ask if this transformation always works and
what is the relationship between the original type and its refined encoding? If these questions
have satisfactory answers, we would then ask if any statement encodable with dependent types

2In the (Liquid) Haskell definition we use � instead of � to denote contexts as as variable names cannot
begin with capital letters.
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can be translated into refinement types. The work in [3] shows that ATTT, a variant of
System F with refinements, from an expressiveness perspective corresponds to second-order
logic. However, it is unclear whether the notion of refinement in ATTT aligns with that of
Liquid Haskell.
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