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Circuit description languages are a class of quantum programming languages in which programs are classical and produce a
description of a quantum computation, in the form of a quantum circuit. Since these programs can leverage all the expressive
power of high-level classical languages, circuit description languages have been successfully used to describe complex
quantum algorithms, whose circuits, however, may involve many more qubits and gate applications than current quantum
architectures can actually muster. In this paper, we present Proto-Quipper-R, a circuit description language endowed with a
linear dependent type-and-effect system capable of deriving parametric upper bounds on the width of the circuits produced
by a program. We prove both the standard type safety results and that the resulting resource analysis is correct with respect
to a big-step operational semantics. Lastly, we introduce QuRA, a static analysis tool based on Proto-Quipper-R’s type system,
and use it to show that our framework allows for the automatic width verification of realistic quantum algorithms, such as
the QFT and Grover’s algorithm.

CCS Concepts: • Theory of computation→ Program verification; Quantum complexity theory; Lambda calculus; Type
theory; Operational semantics; • Software and its engineering → Domain specific languages; • Hardware→ Quantum
computation.

Additional Key Words and Phrases: Effect Typing, Linear Dependent Types, Lambda Calculus, Quantum Computing, Quipper

1 INTRODUCTION
With the promise of providing efficient algorithmic solutions to many problems [14, 32, 36], some of which are
traditionally believed to be intractable [60], quantum computing is the subject of intense investigation by various
research communities within computer science, not least that of programming language theory [28, 49, 57].
Various proposals for idioms capable of tapping into this new computing paradigm have appeared in the literature
since the late 1990s. Some of these approaches [1, 55, 58] turn out to be fundamentally new, in that the entire
state of any given program (including its control flow) can possibly be in quantum superposition. Many other
approaches are strongly inspired by classical languages and traditional programming paradigms [50, 54, 59, 71],
and only allow superposition at the level of data, in the spirit of the so-called QRAM model [41].

One of the major obstacles to the practical adoption of quantum algorithmic solutions is the fact that despite
huge efforts by scientists and engineers alike, it seems that reliable quantum hardware, contrary to classical
one, does not scale too easily: although quantum architectures with up to a thousand qubits have recently seen
the light [12, 13, 45], it is not yet clear whether the so-called quantum advantage [51], namely the scenario in
which quantum computing empirically solves problem instances which would require too much time to be dealt
with classically, is a concrete possibility. This is due to phenomena like quantum decoherence [56], by which
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we mean the situation in which the state of a quantum system becomes useless, typically due to interactions
with its environment. In other words, even though from a purely algorithmic point of view quantum computing
undoubtedly represents an opportunity, from an architectural point of view there are big challenges, which
become more acute as the size of the architecture and the number of operations to be performed grow.

This entails that software which makes use of quantum hardware must be designed with great care: whenever
part of a computation has to be run on a quantum architecture, the amount of resources it needs, and in particular
the amount of qubits it uses, should be kept to a minimum. More generally, a fine control over the low-level
aspects of the computation, something that we willingly abstract from when dealing with most forms of classical
computation, should be exposed to the programmer in the quantum case. This, in turn, has led to the development
and adoption of many domain-specific programming languages and libraries in which the programmer explicitly
manipulates qubits and quantum circuits, while still making use of all the features of a high-level classical
programming language. This is the case of the Qiskit and Cirq libraries [21], but also of the Quipper language
[30, 31].

At the fundamental level, Quipper is a circuit description language embedded in Haskell. Because of this,
Quipper inherits all the expressiveness of the high-level, higher-order functional programming language that
is its host, but for the same reason it also lacks a formal semantics. Nonetheless, over the past few years, a
number of calculi, collectively known as the Proto-Quipper language family, have been developed to formalize
interesting fragments and extensions of Quipper in a type-safe manner [52, 54]. Extensions include, among
others, dynamic lifting [11, 25, 42] and dependent types [24, 26], but resource analysis is still a rather unexplored
research direction in the Proto-Quipper community [63].

The goal of this work is to show that type systems enable the possibility of reasoning about the width of the
circuits produced by a Proto-Quipper program. Specifically, we show how linear dependent types in the style of
Gaboardi and Dal Lago [16, 18, 19, 27] can be adapted to Proto-Quipper, allowing to derive upper bounds on
circuit widths that are parametric on the number of input wires to the circuit, be they classical or quantum. This
enables a form of static analysis of the resource consumption of circuit families and, consequently, of the quantum
algorithms described in the language. Technically, a key ingredient of this analysis, besides linear dependency, is
a novel form of effect typing in which the quantitative information coming from linear dependency informs the
effect system and allows it to keep circuit widths under control.

The rest of the paper is organized as follows. Section 2 informally introduces quantum circuits and explores the
problem of estimating the width of circuits produced by Quipper, while also introducing the language. Section 3
provides a more formal definition of the Proto-Quipper language. In particular, it gives an overview of the system
of simple types due to Rios and Selinger [52], which however is not meant to reason about the size of circuits.
We then move on to the most important technical contribution of this work, namely the linear dependent and
effectful type system, which is introduced in Section 4 and proven to guarantee both type safety and a form of
total correctness in Section 5. Section 6 is dedicated to an example of a practical application of our type and effect
system, that is, a program that builds the Quantum Fourier Transform (QFT) circuit [14, 46] and which is verified
to do so without any ancillary qubits. Finally, Section 7 briefly describes QuRA, a static analysis tool based on the
same linear dependent and effectful type system of the previous sections, and showcases its application to the
QFT example of Section 6, as well as to a few other real-world quantum algorithms [32, 66].

To conclude this introduction, we wish to emphasize that while it is true that quantum computing can be a
difficult and intimidating subject, the class of languages analyzed in this work focuses on circuit construction,
which is an entirely classical process, paying little to no concern to the actual quantum semantics of circuit
execution. Because of this, and due to space constraints, we refrain from providing a general introduction to
quantum computing in this paper. Instead, we refer the interested reader to the excellent textbooks by Nielsen
and Chuang [46], Yanofsky and Mannucci [68], and Ying [69].
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Fig. 1. An example of a quantum circuit: the quantum teleportation circuit

2 AN OVERVIEW ON CIRCUIT WIDTH ESTIMATION
This section provides an informal overview on quantum circuits, their description in the Quipper language, and
the problem of estimating the width of the circuits produced by a Quipper program.

2.1 TheQuantum Circuit Model
Quantum circuits are arguably the most widely adopted model for the description of quantum computations. A
quantum circuit consists of a sequence of gates applied to a collection of wires. Wires represent the individual
bits and qubits involved in a computation, while gates represent elementary reversible operations applied to
them. Beside gates, other non-reversible operations are also available, such as the initialization, discarding or
measurement of wires. Figure 1 exemplifies the notation usually employed to represent quantum circuits: time
flows from left to right, single horizontal lines represent qubit wires, double lines represent bit wires and the
various boxes and symbols that lie on wires represent different operations applied to the corresponding qubits or
bits. In particular:

• The gauge symbol represents a measurement, which collapses a qubit to a classical bit.
• The other boxes represent unitary quantum gates, such as the Hadamard gate � or the Pauli / gate.
• The ground symbol represents that a wire is discarded.
• Gates that are connected via a vertical line to a solid circle lying on a second wire are called controlled

gates and represent the application of an operation to a wire (the target) conditionally on the state of the
second wire (the control). A particularly important controlled gate is the controlled not (or CNOT ) gate,
which negates the state of the target qubit if the control qubit is on. Traditionally, this wire has its own
notation, where the target is marked by the “⊕” symbol.

A wire that starts with |q〉 is initialized as part of the computation to the known state q , while all other wires are
input to the circuit. All wires that are not discarded as part of the computation are outputs of the circuit.

As mentioned at the end of the introduction, the act of building a quantum circuit is purely classical and
transcends the quantum aspects of the corresponding computation, which is why we will not go into further
detail about the semantics of the individual gates and operations we just introduced. However, there is one
property of quantum systems, namely the no-cloning property of quantum states, which has a significant impact
on circuit building. This property asserts that it is impossible to duplicate an arbitrary unknown quantum state,
and because the wires of a quantum circuit represent, in general, quantum states, it follows that we are not
allowed to duplicate or fork wires in a quantum circuit, something which is quite common in classical circuits.

We are interested in the resource consumption of quantum computations, which in the quantum circuit model
corresponds to the size of a circuit. There are many ways to characterize the size of a circuit. A fairly immediate
metric is the width, which is defined as the maximum number of wires active at any point in the circuit, and which
corresponds to a notion of space complexity, or memory requirements of the computation, as it tells us how many
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quantum bits are required to run the circuit. Among the metrics that characterize running time requirements,
instead, we have the gate count, which represents the number of gates required to define a circuit, or equivalently
the number of operations that the computation needs to perform. We should also mention the more refined depth
metric, which is the maximum number of gates encountered on any path from input to output and corresponds
to parallel running time. As an example, the circuit in Figure 1 has a gate count of 8, a width of 3 and a depth of 6.

Quantum circuits can of course be described in a gate-by-gate fashion, which is what we did graphically in
Figure 1 and what can be done programmatically in many low-level quantum programming languages (such
as QASM [15]), but this approach is unwieldy and error-prone, especially when bigger circuits are involved.
Furthermore, individual circuits do not usually implement algorithms. Rather, algorithms are represented by
circuit families, which contain a circuit for each input size of the algorithm. For these reasons, it is usually
preferable to rely on a modular approach to circuit description, where already built circuits can be manipulated
and combined together into larger circuits. This approach is nowadays adopted by many high-level quantum
circuits description languages and libraries, such as Qiskit, Cirq and Quipper.

2.2 Width Analysis in Quipper

Quipper allows programmers to describe quantum circuits in a high-level and elegant way, using both gate-by-
gate and modular approaches. Quipper also supports hierarchical and parametric circuits, thus promoting a view
in which circuits become first-class citizens. Quipper has been shown to be scalable, in the sense that it has been
effectively used to describe complex quantum algorithms that easily translate to circuits involving trillions of
gates applied to millions of qubits. The language allows the programmer to optimize the circuit, e.g. by relying on
additional temporary qubits (called ancillae) for the sake of reducing the circuit depth, or by recycling qubits that
are no longer needed.

One feature that Quipper lacks is a methodology for statically and parametrically proving that important
parameters — such as the width — of the produced circuits are below certain limits. What do we mean by all this?
Suppose that a Quipper programmer writes a function, let us call it shor, which, given an integer = as input,
produces as output a quantum circuit �= , of polynomial size in |= |, designed to factorize =, following [60]. It is
clear that this function does not correspond to a single circuit, because on bigger input integers shor produces
circuits of increasing size. The dynamic analysis of the circuit �= , which would simply consist in analyzing the
size of �= and which is trivial when viewed as a verification problem, can be performed only when the value of =
is known. More interesting is the static analysis of shor, which can be performed once and for all and which
consists in inferring a (hopefully) polynomial bound on the width of �= that is parametric in =. This allows us
to derive upper bounds on the number of qubits needed to run any instance of the program, and ultimately to
understand in advance how big of an instance of the underlying problem can be possibly solved given a fixed
amount of qubits.

In order to better illustrate the kind of scenario we are reasoning about, this section offers some simple examples
of Quipper programs, showing in what sense we can think of capturing the quantitative information that we are
interested in through types and effect systems and linear dependency. We proceed at a very high-level for now,
without any ambition of formality.

Let us start with the example of Figure 2. The Quipper function on the left builds the quantum circuit on the
right: an (admittedly contrived) implementation of the quantum not operation. The dumbNot function implements
negation using a controlled not gate and a temporary qubit a, which is initialized and discarded within the body
of the function. This ancillary qubit corresponds to the uppermost wire in the circuit and although it does not
appear in the interface of the circuit, it clearly adds to its overall width, which is 2.

Consider now the higher-order function in Figure 3. This function takes as input a circuit building function f,
an integer n and describes the circuit obtained by applying f’s circuit n times to the input qubit q. It is easy to
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dumbNot :: Qubit -> Circ Qubit

dumbNot q = do

a <- qinit True -- temporary ancilla

(q,a) <- controlled_not q a

qdiscard a

return q

|1〉

@ @

Fig. 2. A contrived Quipper implementation of the quantum not operation using an ancilla

iter :: (Qubit -> Circ Qubit) -> Int

-> Qubit -> Circ Qubit

iter f 0 q = return q

iter f n q = do

q <- f q

iter f (n-1) q

. . .

. . .

|1〉 |1〉 |1〉

@ @︸                                                        ︷︷                                                        ︸
= times

Fig. 3. A higher-order function which iterates a circuit-building function f on an input qubit q and the result of its application
to the dumbNot function from Figure 2

see that the width of the circuit produced in output by iter dumbNot n is equal to 2, even though, overall, the
number of qubits initialized during the computation is equal to n. The point is that each ancilla is created only
after the previous one has been discarded, thus enabling a form of qubit recycling.

Is it possible to statically analyze the width of the circuit produced in output by iter dumbNot so as to conclude
that it is constant and equal to 2? What techniques can we use? Certainly, the presence of higher-order types
complicates an already non-trivial problem. The approach we propose in this paper is based on two ingredients.
The first is the so-called effect typing [47]. In this context, the effect produced by the program is nothing more
than the circuit and therefore it is natural to think of an effect system in which the width of such circuit, and only
that, is exposed. Therefore, the arrow type � → � should be decorated with an expression indicating the width of
the circuit produced by the corresponding function when applied to an argument of type �. Of course, the width
of an individual circuit is a natural number, so it would make sense to annotate the arrow with such a number.
For technical reasons, however, it will also be necessary to keep track of another natural number, corresponding
to the number of wire resources that the function captures from the surrounding environment. This necessity
stems from a need to keep track of wires even in the presence of data hiding, and will be explained in further
detail in Section 4.

Under these premises, the dumbNot function would receive type Qubit →2,0 Qubit, meaning that it takes as
input a qubit and produces a circuit of width 2 which outputs a qubit. Note that the second annotation is 0,
since we do not capture anything from the function’s environment, let alone a wire. Consequently, because
iter iterates in sequence and because the ancillary qubit in dumbNot can be reused, the type of iter dumbNot n
would also be Qubit →2,0 Qubit.

Let us now consider a slightly different situation, in which the width of the produced circuit is not constant,
but rather increases proportionally to the circuit’s input size. Figure 4 shows a Quipper function that returns a
circuit on = qubits in which the Hadamard gate is applied to each qubit, a common preprocessing step in many
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hadamardN :: [Qubit] -> Circ [Qubit]

hadamardN [] = return []

hadamardN (q:qs) = do

q <- hadamard q

qs <- hadamardN qs

return (q:qs)

@ � @

qs1 � qs1

qs= � qs=

Fig. 4. The hadamardN function implements a circuit family whose circuits have width linear in the size of their input.

Types TYPE �, � ::= 1 | F | !� | � ⊗ � | � ¨ � | List� | Circ (),* )
Parameter types PTYPE %, ' ::= 1 | !� | % ⊗ ' | List % | Circ(),* )
Bundle types BTYPE ),* ::= 1 | F | ) ⊗ *

Fig. 5. The Proto-Quipper types

quantum algorithms. It is obvious that this function works on inputs of arbitrary size, and therefore we can
interpret it as a circuit family, parametrized on the length of the input list of qubits. This quantity, although
certainly a natural number, is unknown statically and corresponds precisely to the width of the produced circuit.
It is thus natural to wonder whether the kind of effect typing we briefly hinted at in the previous paragraph is
capable of dealing with such a function. Certainly, the expressions used to annotate arrows cannot be, like in the
previous case, mere constants, as they clearly depend on the size of the input list. Is there a way to reflect this
dependency in types? Certainly, one could go towards a fully-fledged notion of dependent types, like the ones
proposed by Fu, Kishida, and Selinger [26], but a simpler approach in the style of Dal Lago and Gaboardi’s linear
dependent types [16, 18, 19, 27] turns out to be enough for our purposes. This is precisely the route that we follow
in this paper. In this approach, terms can indeed appear in types, but that is only true for a very restricted class of
terms, disjoint from the ordinary ones, called index terms. As an example, the type of the function hadamardN
above could become List8 Qubit →8,0 List8 Qubit, where 8 is an index variable. The meaning of the type would
thus be that hadamardN takes as input any list of qubits of length 8 and produces a circuit of width at most 8
which outputs 8 qubits. Indices are better explained in Section 4, but in general we can say that they consist of
arithmetical expressions over natural numbers and index variables, and can thus express non-trivial dependencies
between input sizes and corresponding circuit widths.

3 THE PROTO-QUIPPER LANGUAGE
This section aims at introducing the Proto-Quipper family of calculi to the non-specialist, without any form of
resource analysis. At its core, Proto-Quipper is a linear lambda calculus with bespoke constructs to build and
manipulate circuits. Circuits are built as a side-effect of a computation, behind the scenes, but they can also
appear and be manipulated as data in the language.

The types of Proto-Quipper are given in Figure 5. Speaking at a high level, we can say that Proto-Quipper
employs a linear-nonlinear typing discipline. In particular,F ∈ {Bit,Qubit} is a wire type and is linear and ¨ is
the linear arrow constructor. A subset of types, called parameter types, represent the values of the language that
are not linear and that can therefore be copied. Any term of type � can be lifted into a duplicable parameter of
type !� if its type derivation does not require the use of linear resources.
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Terms TERM ", # ::= + , | let 〈G,~〉 = + in " | force+ | box) +
| apply(+ ,, ) | return + | let G = " in #

Values VAL + ,, ::= ∗ | G | ℓ | _G� ." | lift" | (ℓ̄, C, :̄) | 〈+ ,, 〉
| nil | cons + , | fold + ,

Wire bundles BVAL ℓ̄, :̄ ::= ∗ | ℓ | 〈ℓ̄, :̄〉

Fig. 6. The Proto-Quipper syntax

dumbNot ¬ _@Qubit . let 0 = apply(INIT1, ∗) in
let 〈@, 0〉 = apply(CNOT, 〈@, 0〉) in
let _ = apply(DISCARD, 0) in
return @

Fig. 7. An example Proto-Quipper program. INIT1,CNOT and DISCARD are primitive boxed circuits implementing the
corresponding elementary operations.

The syntax of Proto-Quipper is given in Figure 6. Fundamentally, we are dealing with an effectful lambda
calculus with bespoke constructs for manipulating circuits. A return expression turns a value into a trivial
computation, while a let expression is used to sequence computations. Now, let us informally dissect the domain-
specific aspects of this language, starting with the language of values. The constructs of greatest interest are
labels and boxed circuits. A label ℓ represents a reference to a free wire of the underlying circuit being built and is
attributed a wire typeF ∈ {Bit,Qubit}. Due to the no-cloning property of quantum states [46], labels have to be
treated linearly. Arbitrary structures of labels form a subset of values which we call wire bundles and which are
given bundle types. On the other hand, a boxed circuit (ℓ̄, C, :̄) represents a circuit object C as a datum within the
language, together with its input and output interfaces ℓ̄ and :̄ . Such a value is given parameter type Circ(),* ),
where bundle types ) and * are the input and output types of the circuit, respectively. Boxed circuits can be
copied, manipulated by primitive functions and, more importantly, applied to the underlying circuit. This last
operation, which lies at the core of Proto-Quipper’s circuit-building capabilities, is possible thanks to the apply
operator. This operator takes as first argument a boxed circuit (ℓ̄, C, :̄) and appends C to the underlying circuit
D. How does apply know where exactly in D to apply C? Thanks to a second argument: a bundle of wires C̄
coming from the free output wires of D, which identify the exact location where C is supposed to be attached.

The language is expected to be endowed with constant boxed circuits corresponding to fundamental gates
and operations (e.g. Hadamard, CNOT, initialization, etc.), but the programmer can also introduce their own
boxed circuits via the box operator. Intuitively, box takes as input a circuit-building function and executes it in
a sandboxed environment, on dummy arguments, in a way that leaves the underlying circuit unchanged. Said
function produces a standalone circuit C, which is then returned by the box operator as a boxed circuit (ℓ̄, C, :̄).

Figure 7 shows the Proto-Quipper term corresponding to the Quipper program in Figure 2, as an example of
the use of the language. Note that let 〈G,~〉 = " in # is syntactic sugar for let I = " in let 〈G,~〉 = I in # . The
dumbNot function is given type Qubit ¨ Qubit and builds the circuit shown in Figure 2 when applied to an
argument.

On the classical side of things, it is worth mentioning that Proto-Quipper as presented in this section does not
support general recursion. A form of structural recursion on lists is instead provided via a built-in fold constructor,
which takes as argument a (duplicable) step function of type !((� ⊗ �) ¨ �), an initial accumulator of type �,
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rev ¬ let revStep = lift _〈revList, @〉List Qubit⊗Qubit.return (cons @ revList)
in fold revStep nil

Fig. 8. An example of the use of fold: the function that reverses a list

Types TYPE �, � ::= 1 | F | !� | � ⊗ � | � ¨� ,� � | List� � | Circ� (),* )
Param. types PTYPE %, ' ::= 1 | !� | % ⊗ ' | List� % | Circ� (),* )
Bundle types BTYPE ),* ::= 1 | F | ) ⊗ * | List� )

Terms TERM ", # ::= + , | let 〈G,~〉 = + in " | force+ | box) +
| apply(+ ,, ) | return + | let G = " in #

Values VAL + ,, ::= ∗ | G | ℓ | _G� ." | lift" | (ℓ̄, C, :̄) | 〈+ ,, 〉
| nil | cons + , | fold8 + ,

Wire bundles BVAL ℓ̄, :̄ ::= ∗ | ℓ | 〈ℓ̄, :̄〉 | nil | cons ℓ̄ :̄
Indices INDEX � , � ::= 8 | = | � + � | � − � | � · � | max(� , � ) | max8<� �

Fig. 9. Proto-Quipper-R syntax and types

and constructs a function of type List� ¨ �. Although this is not enough to recover the full power of general
recursion, it appears that fold is enough to describe many quantum algorithms. Figure 8 shows an example of the
use of fold to reverse a list. Note that _〈G,~〉�⊗� ." is syntactic sugar for _I�⊗� .let 〈G,~〉 = I in " .

To conclude this section, we just remark that all of the Quipper programs shown in Section 2 can be encoded in
Proto-Quipper. However, Proto-Quipper’s system of simple types is unable to tell us anything about the resource
consumption of these programs. Of course, one could run hadamardN on a concrete input and examine the size of
the circuit produced at run-time, but this approach amounts to testing, not verifying the program, and it tells us
absolutely nothing about how the size of the circuit depends on the size of the input.

4 BRINGING TOGETHER LINEAR DEPENDENCY AND EFFECT TYPING
We are now ready to expand on the informal definition of the Proto-Quipper language given in Section 3, to
reach a formal definition of Proto-Quipper-R: a linearly and dependently typed language whose type system
supports the derivation of upper bounds on the width of the circuits produced by programs.

4.1 Types and Syntax of Proto-Quipper-R
The types and syntax of Proto-Quipper-R are given in Figure 9. As we mentioned, one of the key ingredients
of our type system are the index terms with which we annotate standard Proto-Quipper types. These indices
provide quantitative information about the elements of the resulting types, in a manner reminiscent of refinement
types [22, 53]. In our case, we are primarily concerned with circuit width, which means that the natural starting
point of our extension of Proto-Quipper is precisely the circuit type: the elements of Circ� (),* ) are all boxed
circuits of input type ) , output type* , and width bounded by � . Term � is precisely what we call an index, that is,
an arithmetical expression denoting a natural number. Looking at the grammar for indices, their interpretation
is fairly straightforward, with a few notes: = is a natural number, 8 is an index variable, � − � denotes natural
subtraction, such that � − � = 0 whenever � ≤ � , and lastly max8<� � is the maximum for 8 going from 0 (included)
to � (excluded) of � , where 8 can occur in � . Note that � = 0 implies max8<� � = 0.
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Interpretation of well-formed indices JΘ ` �K : N |Θ | → N

JΘ ` =K(=1, . . . , = |Θ | ) = =,
JΘ, 8 ` 8K(=1, . . . , = |Θ | , =8 ) = =8 ,
JΘ ` � + � K(=1, . . . , = |Θ | ) = JΘ ` �K(=1, . . . , = |Θ | ) + JΘ ` � K(=1, . . . , = |Θ | ),
JΘ ` � · � K(=1, . . . , = |Θ | ) = JΘ ` �K(=1, . . . , = |Θ | )JΘ ` � K(=1, . . . , = |Θ | ),

JΘ ` � − � K(=1, . . . , = |Θ | ) = max(0, JΘ ` �K(=1, . . . , = |Θ | ) − JΘ ` � K(=1, . . . , = |Θ | )),
JΘ ` max(� , � )K(=1, . . . , = |Θ | ) = max(JΘ ` �K(=1, . . . , = |Θ | ), JΘ ` � K(=1, . . . , = |Θ | )),
JΘ ` max8<� � K(=1, . . . , = |Θ | ) = max{JΘ, 8 ` � K(=1, . . . , = |Θ | , =) | 0 ≤ = < JΘ ` �K(=1, . . . , = |Θ | )}.

Fig. 10. Interpretation of well-formed indices

Let Θ be a set of index variable names, which we call an index context. We say that an index � is well-formed
under context Θ, and we write Θ ` � , when all of its free variables occur in Θ. Figure 10 provides a more formal
interpretation of well-formed index terms as functions from N |Θ | to N.

While the index in a circuit type denotes an upper bound, the index in a type of the form List� � denotes the
exact length of the lists of that type. While this refinement might seem quite restrictive in a generic scenario, it
allows us to include lists of labels among wire bundles, something that was not possible with simple lists. This
is due to the fact that sized lists are effectively isomorphic to finite tensors, and therefore a sized list of labels
represent a wire bundle of known size, whereas the same is not true for a simple list of labels. Lastly, as we
anticipated in Section 2, an arrow type � ¨� ,� � is annotated with two indices: � is an upper bound to the width
of the circuit built by the function once it is applied to an argument of type �, while � describes the exact number
of wires captured in the function’s closure. The utility of this last annotation will be clearer in Section 4.3.

The languages for terms and values are almost the same as in Proto-Quipper, with the minor difference that
the fold operator now binds the index variable name 8 within its first argument. This variable appears locally
in the type of the step function, so as to allow each fold iteration to contribute to the overall circuit width in a
different way.

4.2 A Formal Language for Circuits
The type system of Proto-Quipper-R is designed to enable reasoning about the width of circuits. Therefore, before
we formally introduce the type system in Section 4.3, we ought to introduce circuits themselves in a formal way.
So far, we have only spoken of circuits at a very high and intuitive level, and we have represented them only
graphically. Looking at the circuits in Section 2, what do they have in common? At the fundamental level, they
are made up of elementary operations applied to specific wires. Of course, the order of these operations matters,
as does the order of wires that they are applied to. In the existing literature on Proto-Quipper, circuits are usually
interpreted as morphisms in a symmetric monoidal category [52], but this approach makes it particularly hard to
reason about their intensional properties, such as their width. For this reason, we opt for a concrete model of
wires and circuits, rather than an abstract one.

Luckily, we already have a datatype modeling ordered structures of wires, that is, the wire bundles that we
introduced in the previous sections. We use them as the basis upon which we build circuits.

Figure 11 introduces the Circuit Representation Language (CRL) which we use as the target of circuit building
in Proto-Quipper-R. Wire bundles are exactly as in Figure 9 and represent arbitrary structures of wires, while
circuits themselves are defined very simply as sequences of elementary operations applied to said structures.
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Wire bundles BVAL ℓ̄, :̄ ::= ∗ | ℓ | 〈ℓ̄, :̄〉 | nil | cons ℓ̄ :̄
Bundle types BTYPE ),* ::= 1 | F | ) ⊗ * | List� )

Circuits CIRC C,D ::= 83& | C;6(ℓ̄) → :̄

Fig. 11. CRL syntax and types

Bundle Judgment & `1 ℓ̄ : ) Circuit Signature C : & → !

unit

∅ `1 ∗ : 1

lab

ℓ : F `1 ℓ : F

nil
� � = 0

∅ `1 nil : List� )

pair
&1 `1 ℓ̄ : ) &2 `1 :̄ : *

&1, &2 `1 〈ℓ̄, :̄〉 : ) ⊗ *

cons
&1 `1 ℓ̄ : ) &2 `1 :̄ : List� ) � � = � + 1

&1, &2 `1 cons ℓ̄ :̄ : List� )

id

83& : & → &

seq
C : & → !, � � `1 ℓ̄ : )  `1 :̄ : * 6 ∈ G (),* )

C;6(ℓ̄) → :̄ : & → !,  

Fig. 12. The CRL type system

We call & a label context and define it as a mapping from label names to wire types. We use label contexts as a
means to keep track of the set of labels available in a computation, alongside their respective types. Circuit 83&
represents the identity circuit taking as input the labels in & and returning them unchanged, while C;6(ℓ̄) → :̄

represents the application of the elementary operation 6 to the wires identified by ℓ̄ among the outputs of C.
Operation 6 outputs the wire bundle :̄ , whose labels become part of the outputs of the overall circuit. Note that an
“elementary operation” is usually the application of a gate, but it could also be a measurement, or the initialization
or discarding of a wire. Although semantically very different, from the perspective of circuit building these
operations are just elementary building blocks in the construction of a more complex structure, and it makes
no sense to distinguish between them syntactically. Circuits are amenable to a form of concatenation, which is
defined in the natural way.

Definition 4.1 (Circuit Concatenation). We define the concatenation of C and D, or C :: D, as

C :: 83& = C, (1)

C :: (D;6(ℓ̄) → :̄) = (C :: D);6(ℓ̄) → :̄ . (2)

4.2.1 Circuit Typing. Naturally, not all circuits built from the CRL syntaxmake sense. For example 83 (ℓ :Qubit) ;� (:) →
: and 83 (ℓ :Qubit) ;CNOT (〈ℓ, ℓ〉) → 〈:, C〉 are both syntactically correct, but the first applies a gate to a non-existing
wire, while the second violates the no-cloning theorem by duplicating ℓ . To rule out such ill-formed circuits,
we employ a rudimentary type system for circuits which allows us to derive judgments of the form C : & → !,
which informally read “circuit C is well-typed with input label context & and output label context !”.
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The typing rules for CRL are given in Figure 12. We call & `1 ℓ̄ : ) a bundle judgment, and we use it to
give a structured type to an otherwise unordered label context, by means of a wire bundle. Most rules are
straightforward, except those for lists, which rely on a judgment of the form � � = � . This is to be intended as a
semantic judgment asserting that � and � are closed and equal when interpreted as natural numbers. Within the
rule, this reflects the idea that there are many ways to syntactically represent the length of a list. For example, nil
can be given type List0) , but also List1−1) or List0·5) . This kind of flexibility might seem unwarranted for such
a simple language, but it is useful to effectively interface CRL and the more complex Proto-Quipper-R. Speaking
of the actual circuit judgments, the seq rule tells us that the the application of an elementary operation 6 is
well-typed whenever 6 only acts on labels occurring in the outputs of C (those in ℓ̄ , that is in � ), produces in
output labels that do not clash with the remaining outputs of C (since !,  denotes the disjoint union of the two
label contexts) and is of the right type. This last requirement is expressed as 6 ∈ G (),* ), where G (),* ) is the
subset of elementary operations that can be applied to an input of type ) to obtain an output of type * . For
example, the Hadamard gate, which acts on a single qubit, is in G (Qubit,Qubit), while the measurement of a
qubit is in G (Qubit,Bit).

4.2.2 Circuit Width. Among the many properties of circuits, we are interested in width, so we conclude this
section by giving a formal status to this quantity.

Definition 4.2 (Circuit Width). We define the width of a CRL circuit C, written width(C), as follows

width(83& ) = |& |, (3)

width(C;6(ℓ̄) → :̄) = width(C) +max(0, new(6) − discarded(C)), (4)

discarded(C) = width(C) − outputs(C), (5)

where |& | is the number of labels in & , new(6) represents the net number of new wires initialized by 6, and
outputs(C) represents the number of outputs of C. Note that one expects new(6) to be equal to the difference
between the number of labels in :̄ and those in ℓ̄ . The overarching idea behind this definition is that whenever
we require new wires in our computation, we first try to reuse as many previously discarded wires as possible.
As long as we can do this (new(6) ≤ discarded(C)), the initializations do not add to the total width of the circuit.
Otherwise (new(6) > discarded(C)) we must actually create new wires, increasing the overall width of the
circuit.

Another characterization of width can be obtained by expanding the definition of discarded(C):
width(C;6(ℓ̄) → :̄) = width(C) +max(0, new(6) − discarded(C)) (6)

= width(C) +max(0, new(6) −width(C) + outputs(C)) (7)
= max(width(C), new(6) + outputs(C)). (8)

Let |ℓ̄ | be the number of labels in a bundle ℓ̄ . Considering that new(6) = |:̄ | − |ℓ̄ |, we have

width(C;6(ℓ̄) → :̄) = max(width(C), |:̄ | + outputs(C) − |ℓ̄ |). (9)

Since |:̄ | is the number of outputs of 6 and outputs(C) − |ℓ̄ | is the number of outputs of C that are unaffected
by 6, we can describe the width of C;6(ℓ̄) → :̄ as the maximum between the width of C and the number of
outputs after the application of 6. This characterization generalizes to the concatenation of circuits in the form
of the fundamental property which is stated in Proposition 4.3 and illustrated in Figure 13. We use this result
pervasively in proving the correctness of Proto-Quipper-R in Section 5.

Proposition 4.3 (Appending). Given C : & → !, � and D : � →  such that the labels shared by C and D
are all and only those in � , we have
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|& | |! |

|� | | |

!

�

&

C
!

D  

Fig. 13. The kind of scenario described by Proposition 4.3

(1) C :: D : & → !,  ,

(2) width(C :: D) ≤ max(width(C),width(D) + |! |).

Proof. By induction of the derivation of D : � →  and case analysis on D. The case D ≡ 83� is trivial.
The inductive case D ≡ D′;6(ℓ̄) → :̄ is still straightforward, but it requires further case splitting on whether
new(6) ≤ discarded(C :: D) or new(6) > discarded(C :: D). It also requires to prove the intuitive notion that
the width of a circuit is bounded from below by both the number of its inputs and the number of its outputs. �

4.3 Typing Programs
Going back to Proto-Quipper-R, we have already seen how the standard Proto-Quipper types are refined with
quantitative information. However, decorating types is not enough for the purposes of width estimation. Recall
that, in general, a Proto-Quipper program produces a circuit as a side effect of its evaluation. If we want to reason
about the width of said circuit, it is not enough to rely on a regular linear type system, although dependent.
Rather, we have to introduce the second ingredient of our analysis and turn to a type-and-effect system [47],
revolving around a type judgment of the form

Θ; Γ;& `2 " : �; � , (10)

which intuitively reads “for all assignments of natural numbers to the index variables in Θ, under typing context
Γ and label context & , term" has type � and produces a circuit of width at most �”. Therefore, Θ is a collection
of index variables which are universally quantified in the rest of the judgment, while Γ is a typing context for
parameter and linear variables alike. When a typing context contains exclusively parameter variables, we write
it as Φ. In this judgment, � plays the role of an effect annotation, describing a relevant aspect of the side effect
produced by the evaluation of" . This is an upper bound on the width of the circuit described by" , as opposed
to the exact width of such circuit, because we have to contemplate the possibility for " to exhibit branching
behavior, and thus produce different circuits whose sizes depend non-arithmetically on the classical parameters
in Θ. Although Proto-Quipper-R is fairly limited in terms of control flow, the existence of a fold operator with a
default case is enough to warrant this overapproximation.

The attentive reader might wonder why this annotation consists only of one index, whereas when we discussed
arrow types in previous sections we needed two. The reason is that the second index, which we use to keep track
of the number of wires captured by a function, is redundant in a typing judgment where the same quantity can
be inferred directly from the environments Γ and & . A similar typing judgment of the form Θ; Γ;& `E + : � is
introduced for values, which are effect-less.

The rules for deriving typing judgments are those in Figure 14, where Γ1, Γ2 denotes the union of two contexts
with disjoint domains. The well-formedness judgment Θ ` � is lifted to types and typing contexts in the natural
way, so we omit formal derivation rules. Among interesting typing rules, we can see how the circ rule bridges
between CRL and Proto-Quipper-R. A boxed circuit (ℓ̄, C, :̄) is well-typed with type Circ� (),* ) when C is no
wider than the quantity denoted by � , C : & → ! and ℓ̄, :̄ contain all and only the labels in & and !, respectively,
acting as a language-level interface to C.
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Computational Judgment Θ; Γ;& `E + : � Value Judgment Θ; Γ;& `2 " : �; �

unit
Θ ` Φ

Θ;Φ; ∅ `E ∗ : 1

lab
Θ ` Φ

Θ;Φ; ℓ : F `E ℓ : F

var
Θ ` Φ, G : �

Θ;Φ, G : �; ∅ `E G : �

abs
Θ; Γ, G : �;& `2 " : �; �

Θ; Γ;& `E _G� ." : � ¨� ,#(Γ;& ) �

app
Θ;Φ, Γ1;&1 `E + : � ¨� ,� � Θ;Φ, Γ2;&2 `E , : �

Θ;Φ, Γ1, Γ2;&1, &2 `2 + , : �; �

lift
Θ;Φ; ∅ `2 " : �; 0

Θ;Φ; ∅ `E lift" : !�

force
Θ;Φ; ∅ `E + : !�

Θ;Φ; ∅ `2 force+ : �; 0

circ
C : & → ! & `1 ℓ̄ : ) ! `1 :̄ : * Θ � width(C) ≤ � Θ ` Φ

Θ;Φ; ∅ `E (ℓ̄, C, :̄) : Circ� (),* )

apply
Θ;Φ, Γ1;&1 `E + : Circ� (),* ) Θ;Φ, Γ2;&2 `E , : )

Θ;Φ, Γ1, Γ2;&1, &2 `2 apply(+ ,, ) : * ; �

box
Θ;Φ; ∅ `E + : !() ¨� ,� * )

Θ;Φ; ∅ `2 box) + : Circ� (),* ); 0

nil
Θ ` Φ Θ ` �

Θ;Φ; ∅ `E nil : List0�

cons
Θ;Φ, Γ1;&1 `E + : � Θ;Φ, Γ2;&2 `E , : List� �

Θ;Φ, Γ1, Γ2;&1, &2 `E cons + , : List�+1�

fold
Θ;Φ, Γ;& `E , : �{0/8} Θ, 8;Φ; ∅ `E + : !((� ⊗ �) ¨� ,� ′ �{8 + 1/8})
Θ ` � Θ ` � � = max(#(Γ;&),max8<� � + (� − 1 − 8) · #(�))

Θ;Φ, Γ;& `E fold8 + , : List� � ¨�,#(Γ;& ) �{�/8}

dest
Θ;Φ, Γ1;&1 `E + : � ⊗ � Θ;Φ, Γ2, G : �,~ : �;&2 `2 " : �; �

Θ;Φ, Γ1, Γ2;&1, &2 `2 let 〈G,~〉 = + in " : �; �

pair
Θ;Φ, Γ1;&1 `E + : � Θ;Φ, Γ2;&2 `E , : �

Θ;Φ, Γ1, Γ2;&1, &2 `E 〈+ ,, 〉 : � ⊗ �

return
Θ; Γ;& `E + : �

Θ; Γ;& `2 return + : �; #(Γ;&)

let
Θ;Φ, Γ1;&1 `2 " : �; � Θ;Φ, Γ2, G : �;&2 `2 # : �; �

Θ;Φ, Γ1, Γ2;&1, &2 `2 let G = " in # : �;max(� + #(Γ2;&2), � )

vsub
Θ; Γ;& `E + : � Θ `B � <: �

Θ; Γ;& `E + : �

csub
Θ; Γ;& `2 " : �; � Θ `B � <: � Θ � � ≤ �

Θ; Γ;& `2 " : �; �

Fig. 14. Proto-Quipper-R type system
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The two main constructs that interact with circuits are apply and box. The apply rule is the foremost place
where effects enter the type derivation: + represents some boxed circuit of width at most � , so its application to
an appropriate wire bundle, produces exactly a circuit of width at most � . The box rule, on the other hand,
works approximately in the opposite direction. If + is a circuit building function that, once applied to an input of
type ) , would build a circuit of output type* and width at most � , then boxing it means turning it into a boxed
circuit with the same characteristics. Note that the box rule requires that its argument be duplicable and the
typing context be devoid of linear variables. This reflects the idea that + is meant to be executed in complete
isolation, to build a standalone, replicable circuit, and therefore it should not capture any linear resource (e.g. a
label) from the surrounding environment.

4.3.1 Wire Count. Many of the rules in Figure 14 rely on an operator written #(·), which we call the wire count
operator. Intuitively, this operator returns the number of wire resources (in our case, bits or qubits) represented
by a type or context. To understand how this is important, consider the return rule. The return operator turns a
value + into a trivial computation that evaluates immediately to + , and therefore it would be tempting to give it
an effect annotation of 0. However,+ is not necessarily a closed value. In fact, it might very well contain many bits
and qubits, coming both from the typing context Γ and the label context & . Although nothing happens to these
bits and qubits, they still correspond to wires in the underlying circuit, and these wires have an intrinsic width
which must be accounted for in the judgment for the otherwise trivial computation. The return rule therefore
produces an effect annotation of the form #(Γ;&), which is shorthand for #(Γ) + #(&) and corresponds exactly to
this quantity. A formal definition of the wire count operator on types is given in the following definition, which
is lifted to contexts in the natural way.

Definition 4.4 (Wire Count). We define the wire count of type �, or #(�), as an index such that

#(1) = #(!�) = #(Circ� (),* )) = 0, (11)
#(F) = 1, (12)

#(� ⊗ �) = #(�) + #(�), (13)
#(� ¨� ,� �) = � , (14)

#(List� �) = � · #(�). (15)

This definition is fairly straightforward, except for the arrow case. By itself, an arrow type does not give us any
information about the amount of qubits or bits captured in the corresponding closure. This is precisely where the
second index � , which keeps track exactly of this quantity, comes into play. This annotation is introduced by the
abs rule and allows our analysis to circumvent data hiding.

The let rule is another rule in which wire counts are essential. The two terms" and # in let G = " in # build
the circuits C" and C# , whose widths are bounded by � and � , respectively. Once again, it might be tempting to
conclude that the overall circuit built by the let expression has width bounded by max(� , � ), but this fails to take
into account the fact that while" is building C" starting from the wires contained in Γ1 and &1, we must keep
aside the wires contained in Γ2 and&2, which will be used by # to build C# . These wires must flow alongside C"
and their width, i.e. #(Γ2;&2), adds up to the total width of the left-hand side of the let construct, leading to an
overall width upper bound of max(� + #(Γ2;&2), � ). This situation is better illustrated in Figure 15.

The last rule that makes substantial use of wire counts is fold, arguably the most complex rule of the system.
The main ingredient of the fold rule is the bound index variable 8 , which occurs in the accumulator type � and
is used to keep track of the number of steps performed by the fold. Let (·){�/8} denote the capture-avoiding
substitution of the index term � for the index variable 8 inside an index, type, context, value or term, not unlike
(·) [+ /G] denotes the capture-avoiding substitution of the value+ for the variable G . Intuitively, if the accumulator
has initially type �{0/8} and each application of the step function increases 8 by one, then when we fold over a
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#(Γ1 )

#(&1 ) #(�)

#(Γ2 )

#(&2 ) #(�)

G : �

Γ1

C"
&1

C#Γ2

&2

Fig. 15. The shape of a circuit built by a let expression

#(Γ)

#(& )

#(�) #(�{1/8 })

#(�) #(�{2/8 })

#(�{�−1/8 })

#(�) #(�{�/8 })

. . .

. . .

Γ

C0&

C1

C�−1

Fig. 16. The shape of a circuit built by a fold applied to an input list of type List� �

list of length � we get an output of type �{�/8}. Index � is the upper bound to the width of the overall circuit
built by the fold: if the input list is empty, then the width of the circuit is just the number of wires contained in
the initial accumulator, that is, #(Γ;&). If the input list is non-empty, on the other hand, things get slightly more
complicated. At each step 8 , the step function builds a circuit C8 of width bounded by � , where � might depend on
8 . This circuit takes as input all the wires in the accumulator, as well as the wires contained in the first element of
the input list, which are #(�). The wires contained in remaining � − 1 − 8 elements have to flow alongside C8 ,
giving a width upper bound of � + (� − 1 − 8) × #(�) at each step 8 . The overall width upper bound is then the
maximum for 8 going from 0 to � − 1 of this quantity, i.e. precisely max8<� � + (� − 1 − 8) · #(�). Once again, a
graphical representation of this scenario is given in Figure 16.

4.3.2 Subtyping. Notice that Proto-Quipper-R’s type system includes two subsumption rules, which are effectively
the same rule for terms and values, respectively: csub and vsub. We mentioned that our type system resembles a
refinement type system, and all such systems induce a subtyping relation between types, where � is a subtype of
� whenever the former is “at least as refined” as the latter. In our case, a subtyping judgment such as Θ `B � <: �
means that “for all assignments of natural numbers to the index variables in Θ, � is a subtype of �”. We derive
this kind of judgments by the rules in Figure 17.

Subtyping relies in turn on a judgment of the form Θ � � ≤ � , which is a generalization of the semantic
judgment that we used in the CRL type system in Section 4.2, defined as follows.
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Subtyping Judgment Θ `B � <: �

unit

Θ `B 1 <: 1

wire

Θ `B F <: F

bang
Θ `B �1 <: �2

Θ `B !�1 <: !�2

tensor
Θ `B �1 <: �2 Θ `B �1 <: �2

Θ `B �1 ⊗ �1 <: �2 ⊗ �2

arrow
Θ `B �2 <: �1 Θ `B �1 <: �2

Θ � �1 ≤ �2 Θ � �1 = �2

Θ `B �1 ¨�1,�1 �1 <: �2 ¨�2,�2 �2

list
Θ `B �1 <: �2 Θ � �1 = �2

Θ `B List�1 �1 <: List�2 �2

circ
Θ `B )2 <: )1 Θ `B *1 <: *2 Θ � � ≤ �

Θ `B Circ� ()1,*1) <: Circ� ()2,*2)

Fig. 17. Proto-Quipper-R subtyping rules

Definition 4.5 (Semantic Judgment). We say that � is lesser or equal than � for all assignment of the index variables
in Θ, and we write Θ � � ≤ � , when Θ ` � ,Θ ` � and for all =1, . . . , = |Θ | ∈ N,

JΘ ` �K(=1, . . . , = |Θ | ) ≤ JΘ ` � K(=1, . . . , = |Θ | ),

assuming Θ = 81, . . . , 8 |Θ | .

Consequently, Θ � � = � is shorthand for “Θ � � ≤ � and Θ � � ≤ �” and � � = � is shorthand for ∅ � � = � . We
purposefully leave the decision procedure of this kind of judgments unspecified. In Section 7, we discuss how
they can be effectively discharged to an SMT solver [10].

4.4 Operational Semantics
Operationally speaking, it does not make sense, in any Proto-Quipper dialect, to speak of the semantics of a
term in isolation: a term is always evaluated in the context of an underlying circuit that supplies all of the term’s
free labels. We therefore define the operational semantics of Proto-Quipper-R as a big-step evaluation relation
⇓ on configurations, i.e. circuits paired with either terms or values. Intuitively, (C, ") ⇓ (D,+ ) means that "
evaluates to + and turns C into D as a side effect.

The rules for evaluating configurations are given in Figure 18, where C,D and E are circuits, " and # are
terms, while + ,, ,-,. and / are values. Note that, operationally speaking, let is associative and return acts as
its identity. Most evaluation rules are straightforward, with the exception perhaps of apply, box and fold-step.
Being the fundamental block of circuit-building, the semantics of apply lies almost entirely in the way it updates
the underlying circuit. The concatenation of the underlying circuit C and the applicand D is delegated entirely to
the append function, which is given in Definition 4.7. Before we examine the append function, however, consider
that when we deal with circuit objects we are not really interested in the concrete labels that occur in them, but
rather in the structure that they convey. For this reason, we introduce the following notion of equivalent circuits.

Definition 4.6 (Circuit Equivalence). We say that two boxed circuits (ℓ̄, C, :̄) and (C̄ ,D, @̄) are equivalent, and we
write (ℓ̄, C, :̄) � (C̄ ,D, @̄), when there exists a renaming d of labels such that d (ℓ̄) = C̄ , d (:̄) = @̄ and d (C) = D.
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Big-step Evaluation (C, ") ⇓ (D,+ )

app
(C, " [+ /G]) ⇓ (D,, )
(C, (_G� .")+ ) ⇓ (D,, )

dest
(C, " [+ /G] [, /~]) ⇓ (D, - )

(C, let 〈G,~〉 = 〈+ ,, 〉 in ") ⇓ (D, - )

force
(C, ") ⇓ (D,+ )

(C, force(lift")) ⇓ (D,+ )

apply
(E, @̄) = append(C, C̄ , (ℓ̄,D, :̄))
(C, apply((ℓ̄,D, :̄), C̄)) ⇓ (E, @̄)

box
(&, ℓ̄) = freshlabels() ) (83& , ") ⇓ (83& ,+ ) (83& ,+ ℓ̄) ⇓ (D, :̄)

(C, box) (lift")) ⇓ (C, (ℓ̄,D, :̄))

return

(C, return + ) ⇓ (C,+ )

let
(C, ") ⇓ (E,+ ) (E, # [+ /G]) ⇓ (D,, )

(C, let G = " in # ) ⇓ (D,, )

fold-end

(C, (fold8 + , ) nil) ⇓ (C,, )

fold-step
(C, "{0/8}) ⇓ (C, . ) (C, . 〈+ ,, 〉) ⇓ (E, / )

(E, (fold8 (lift"{8 + 1/8}) / ), ′) ⇓ (D, - )
(C, (fold8 (lift") + ) (cons, , ′)) ⇓ (D, - )

Fig. 18. Proto-Quipper-R big-step operational semantics

We can now move on to the definition of append, where the notion of circuit equivalence is used to instantiate
the generic input interface of a boxed circuit with the actual labels that it is going to be appended to, and to
ensure that there are no name clashes between the appended circuit and the underlying circuit.

Definition 4.7 (append). We define the append of (ℓ̄,D, :̄) to C on C̄ , written append(C, C̄ , (ℓ̄,D, :̄)), as a pair of
circuit object and wire bundle computed as follows:

(1) Find (C̄ ,D′, @̄) � (ℓ̄,D, :̄) such that the labels shared by C and D′ are exactly those in C̄ ,
(2) Let E = C :: D′,
(3) Return (E, @̄).

On the other hand, the semantics of a term of the form box) (lift") relies on the freshlabels function. What
freshlabels does is take as input a bundle type ) and instantiate fresh &, ℓ̄ such that & `1 ℓ̄ : ) . The wire bundle ℓ̄
is then used as a dummy argument to + , the circuit-building function resulting from the evaluation of " . This
function application is evaluated in the context of the identity circuit 83& and eventually produces a circuit D,
together with its output labels :̄ . Finally, ℓ̄ and :̄ become respectively the input and output interfaces of the boxed
circuit (ℓ̄,D, :̄), which is the result of the evaluation of box) (lift").

Note, at this point, that ) controls how many labels are initialized by the freshlabels function. Because ) can
contain indices (e.g. it could be that ) ≡ List3 Qubit), it follows that in Proto-Quipper-R indices are not only
relevant to typing, but they also have operational value. For this reason, the semantics of Proto-Quipper-R is well-
defined only on terms closed both in the sense of regular variables and index variables, since a circuit-building
function of input type, say, List8 Qubit does not correspond to any individual circuit, and therefore it makes no
sense to box it. This aspect of the semantics is also apparent in the fold-step rule, where the index variable 8
occurring free in" is instantiated to 0 before evaluating" to obtain the step function . . Then, before evaluating
the next fold, 8 is replaced with 8 + 1 in" , increasing the index for the next iteration.
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5 TYPE SAFETY AND CORRECTNESS
Because the operational semantics of Proto-Quipper-R is based on configurations, we ought to adopt a notion of
well-typedness which is also based on configurations. The following definition of well-typed configuration is thus
central to our type-safety analysis.

Definition 5.1 (Well-typed Configuration). We say that configuration (C, ") is well-typed with input & , type
�, width � and output !, and we write & ` (C, ") : �; � ;!, whenever C : & → !, � for some � such that
∅; ∅;� `2 " : �; � . We write & ` (C,+ ) : �;! whenever C : & → !, � for some � such that ∅; ∅;� `E + : �.

The three results that we want to show in this section are that any well-typed term configuration & ` (C, ") :
�; � ;! evaluates to some configuration (D,+ ), that& ` (D,+ ) : �;! and that D is obtained from C by extending
it with a sub-circuit of width at most � . These claims correspond to the subject reduction and total correctness
properties that we will prove at the end of this section. However, before we move onto these proofs, let us
show that the fundamental intuition behind our formal system holds. In other words, let us prove that all of
the judgments so far presented that depend on an index context Θ remain valid for any assignment of natural
numbers to the variables in Θ. We actually prove the slightly more general result that such judgments remain
valid under any substitution of well-formed indices for index variables. Let Π ⊲ ' denote that judgment ' is the
conclusion of a derivation Π.

Lemma 5.2 (Well-formedness Refinement). Let Π be a well-formedness derivation and let � be an index such
that Θ ` � . We have that

Π ⊲ Θ, 8 ` � =⇒ Θ ` � {�/8},
Π ⊲ Θ, 8 ` � =⇒ Θ ` �{�/8}.

Proof. By induction on the size of Π and case analysis on the rule used to derive its conclusion. �

Lemma 5.3 (Semantic Refinement). Let � be an index such that Θ ` � . We have that

Θ, 8 � � ≤ � =⇒ Θ � � {�/8} ≤ �{�/8}. (16)

Proof. Using Lemma 5.2, we show that for allΘ, 8 ` � andΘ ` � , we haveΘ ` � {�/8} and JΘ ` � {�/8}K(=1, . . . , = |Θ | ) =
JΘ, 8 ` � K(=1, . . . , = |Θ | , JΘ ` �K(=1, . . . , = |Θ | )). By definition 4.5, Θ, 8 � � ≤ � entails Θ, 8 ` � and Θ, 8 ` �, as well
as JΘ, 8 ` � K(=1, . . . , = |Θ | , =) ≤ JΘ, 8 ` �K(=1, . . . , = |Θ | , =), for all =1, . . . , = |Θ | , = ∈ N, assuming Θ = 81, . . . , 8 |Θ | .
By choosing = = JΘ ` �K(=1, . . . , = |Θ | ), we get that for all =1, . . . , = |Θ | ∈ N, JΘ, 8 ` � K(=1, . . . , = |Θ | , JΘ `
�K(=1, . . . , = |Θ | )) ≤ JΘ, 8 ` �K(=1, . . . , = |Θ | , JΘ ` �K(=1, . . . , = |Θ | )), that is, JΘ ` � {�/8}K(=1, . . . , = |Θ | ) ≤ JΘ `
�{�/8}K(=1, . . . , = |Θ | ), which concludes the claim. �

Lemma 5.4 (Subtyping Refinement). Let � be an index such that Θ ` � . We have that

Θ, 8 `B � <: � =⇒ Θ `B �{�/8} <: �{�/8}. (17)

Proof. By induction on the derivation of Θ, 8 `B � <: � and case analysis on the rule used to derive its
conclusion, making use of lemmata 5.2 and 5.3. �

Lemma 5.5 (Typing Refinement). Let Π be a typing derivation and let � be an index such that Θ ` � . We have
that

Π ⊲ Θ, 8; Γ;& `2 " : �; � =⇒ Θ; Γ{�/8};& `2 "{�/8} : �{�/8}; � {�/8},
Π ⊲ Θ, 8; Γ;& `E + : � =⇒ Θ; Γ{�/8};& `E + {�/8} : �{�/8}.

Proof. By induction on the size of Π and case analysis on the rule used to derive its conclusion, using lemmata
5.2, 5.3 and 5.4. �
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Realization + �& �

unit

∗ �∅ 1

label

ℓ �ℓ :F F

abs
∀, :, �! � =⇒ + , ��&,! � � � = |& |

+ �& � ¨� ,� �

lift
" �0

∅ �

lift" �∅ !�

pair
+ �& � , �! �

〈+ ,, 〉 �&,! � ⊗ �

nil
� � = 0

nil �∅ List� �

cons
+ �& � , �! List� � � � = � + 1

cons + , �&,! List� �

circ
C : & → ! & `1 ℓ̄ : ) ! `1 :̄ : * � width(C) ≤ �

(ℓ̄, C, :̄) �∅ Circ� (),* )

Fig. 19. Realization rules

Given lemmata 5.2 through 5.5, if we take � to be an arbitrary number = ∈ N, we obtain precisely our
fundamental intuition. We can now move onto subject reduction and total correctness. Both these results rely
on a central lemma and on the mutual notions of realization and reducibility, which we first give formally. We
define + �& �, which reads + realizes � under & , as the smallest relation closed under the rules in Figure 19,
while reducibility is defined as follows.

Definition 5.6 (Reducibility). We say that" is reducible under & with type � and width � , and we write" ��
&
�,

if, for all C such that C : ! → &,� , there exist D,+ such that
(1) (C, ") ⇓ (C :: D,+ ),
(2) � width(D) ≤ � ,

(3) D : & →  for some  such that + � �.

Both relations, and in particular reducibility, are given in the form of unary logical relations [61]. The intuition
is pretty straightforward: a term is reducible with width � if it evaluates correctly when paired with any circuit C
which provides its free labels and if it extends C with a sub-circuit D whose width is bounded by � . Realization,
on the other hand, is less immediate. For most cases, realizing type � loosely corresponds to being closed and
well-typed with type �, but a value realizes an arrow type � ¨� ,� � when its application to a value realizing � is
reducible with type � and width � .

By themselves, realization and reducibility are defined only on terms and values closed in the sense of both
regular and index variables. To extend these notions to open terms and values, we adopt the standard approach
of reasoning explicitly about the substitutions that would render them closed. A closing value substitution W is
a function that turns an open term " into a closed term W (") by substituting a value for each free variable
occurring in" . We say that W implements a typing context Γ using label context & , and we write W �& Γ, when it
replaces every variable G8 in the domain of Γ with a value +8 such that +8 �&8

Γ(G8 ) and & =
⊎
G8 ∈dom(Γ) &8 . A

closing index substitution \ is similar, only it substitutes closed indices for index variables and can be applied
to indices, types, contexts, values and terms alike. We say that \ implements an index context Θ, and we write
\ � Θ, when it replaces every index variable in Θ with a closed index term. This allows us to give the following
fundamental lemma, which will be used while proving all other claims.
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Lemma 5.7 (Fundamental Lemma). Let Π be a type derivation. For all \ � Θ and W �& \ (Γ), we have that

Π ⊲ Θ; Γ;! `2 " : �; � =⇒ W (\ (")) �\ (� )
&,!

\ (�),
Π ⊲ Θ; Γ;! `E + : � =⇒ W (\ (+ )) �&,! \ (�).

Proof. By induction on the size of Π and case analysis on the rule used to derive its conclusion. Most cases
are straightforward once we prove that for all + ,& and �, + �& � implies #(�) = |& | and that whenever a
substitution W implements Γ1, Γ2, then W = W1 ◦ W2 for some W1, W2 that implement Γ1 and Γ2, respectively. On the
other hand, nontrivial proof cases include

• The let case, which requires Proposition 4.3 and the associativity of :: to deal with the sub-circuits built
by the two sub-terms of the let expression.

• The apply case, which requires showing that wire bundles of the same type can always be renamed into
each other and that renaming labels inside a boxed circuit preserves realization.

• The vsub and csub cases, which require showing that for all + ,&,� and �, + �& � and `B � <: � entail
+ �& �.

• The fold case, which requires proving that for all - realizing the argument type of fold8 + , , let it be
List� �, we have that (fold8 - , )- is reducible. This requires further induction on - �� List� � and the
use of Proposition 4.3.

�

Lemma 5.7 tells us that any well-typed term (resp. value) is reducible (resp. realizes its type) when we instantiate
its free variables according to its contexts. Now that we have Lemma 5.7, we can proceed to proving the
aforementioned results of subject reduction and total correctness. We start with the former, which unsurprisingly
requires a substitution lemma.

Lemma 5.8 (Value Substitution). Let Π be a type derivation and let+ be a value such that Θ;Φ, Γ1;&1 `E + : �.
We have that

Π ⊲ Θ;Φ, Γ2, G : �;&2 `2 " : �; � =⇒ Θ;Φ, Γ1, Γ2;&1, &2 `2 " [+ /G] : �; � ,
Π ⊲ Θ;Φ, Γ2, G : �;&2 `E , : � =⇒ Θ;Φ, Γ1, Γ2;&1, &2 `E , [+ /G] : �.

Proof. By induction on the size of Π and case analysis on the rule used to derive its conclusion. �

Theorem 5.9 (Subject Reduction). If & ` (C, ") : �; � ;! and (C, ") ⇓ (D,+ ), then & ` (D,+ ) : �;!.

Proof. By induction on the derivation of (C, ") ⇓ (D,+ ) and case analysis on the rule used to derive its
conclusion. Lemma 5.8 is essential to the app,dest and let cases, while lemma 5.5 is essential to the fold-step
case. Lemma 5.7 is essential to the box case, as it is the only case in which the side effect of the evaluation (the
circuit built by the function being boxed), whose preservation is a matter of correctness, becomes a value (the
resulting boxed circuit). �

Of course, type soundness is not enough: we also want the resource analysis carried out by our type system to
be correct, as stated in the following theorem.

Theorem 5.10 (Total Correctness). If& ` (C, ") : �; � ;!, then there existD,+ such that (C, ") ⇓ (C :: D,+ )
and � width(D) ≤ � .

Proof. By definition, & ` (C, ") : �; � ;! entails that C : & → !, � and ∅; ∅;� `2 " : �; � . Since an empty
context is trivially implemented by an empty closing substitution, by Lemma 5.7 we get " ��

�
�, which by

definition entails that there exist D,+ such that (C, ") ⇓ (C :: D,+ ) and � width(D) ≤ � . �
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qft ¬ fold9 qftStep nil
qftStep ¬ lift(return _〈qs, @〉List9 Qubit⊗Qubit .

let 〈=, qs〉 = qlen qs in
let revQs = rev qs in
let 〈@, qs〉 = (fold4 (lift(rotate=)) 〈@, nil〉) revQs in
let @ = apply(H, @) in
return (cons @ qs))

rotate ¬ _=Nat .return _〈〈@, cs〉, 2〉(Qubit⊗List4 Qubit)⊗Qubit .

let 〈<, cs〉 = qlen cs in
let rgate = makeRGate (= + 1 −<) in
let 〈@, 2〉 = apply(rgate, 〈@, 2〉) in
return 〈@, cons 2 cs〉

Fig. 20. A Proto-Quipper-R implementation of theQuantum Fourier Transform circuit family. The usual syntactic sugar is
employed.

6 AN EXAMPLE: THE QUANTUM FOURIER TRANSFORM
This section provides an example of how realistic type derivations are carried out in Proto-Quipper-R. In particular,
we use our language to implement the Quantum Fourier Transform (QFT) algorithm [14, 46] and verify that the
circuits it produces have width no greater than the size of their input. At an intuitive level, the QFT is the quantum
analogue of the Discrete Fourier Transform (DFT) [29]. It is an ubiquitous subroutine in quantum computing
and it plays a fundamental role in many mainstream algorithms, such as Shor’s algorithm [60], quantum phase
estimation [46], quantum modular arithmetic [2], and the HHL algorithm [36].

A Proto-Quipper-R implementation of the QFT algorithm is given in Figure 20. As we walk through the various
parts of the program, be aware that we will focus on the resource aspects of the algorithm, ignoring much of its
actual meaning. Starting bottom-up, we assume that we have an encoding of naturals in the language and that we
can perform arithmetic on them. We also assume some primitive gates and gate families: H is the boxed circuit
corresponding to the Hadamard gate and has type Circ1 (Qubit,Qubit), whereas the makeRGate function has type
Nat ¨0,0 Circ2 (Qubit⊗Qubit,Qubit⊗Qubit) and produces instances of the parametric controlled '= gate. On the
other hand, qlen and rev stand for regular language terms which implement respectively the linear list length and
reverse functions.They have type qlen : List8 Qubit ¨8,0 (Nat⊗List8 Qubit) and rev : List8 Qubit ¨8,0 List8 Qubit
in our type system.

We now turn our attention to the actual QFT algorithm. Function qftStep builds a single step of the QFT circuit.
The width of the circuit produced at step 9 is dominated by the folding of the rotate= function, which applies
controlled rotations between appropriate pairs of qubits and has type

(Qubit ⊗ List4 Qubit) ⊗ Qubit ¨4+2,0 Qubit ⊗ List4+1 Qubit, (18)

meaning that rotate= rearranges the structure of its inputs, but overall does not introduce any new wire. We
fold this function starting from an accumulator 〈@, nil〉 of type Qubit ⊗ List0 Qubit, meaning that we can give
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@3 '3 '2 � @3

@2 '2 � @2

@1 � @1

Fig. 21. The circuit of input size 3 produced by qft (cons @1 cons @2 cons @3 nil)

fold9 (lift(rotate=)) 〈@, nil〉 type as follows:
fold
8, 9, 4 ;= : Nat; ∅ `E lift(rotate=) : !((Qubit ⊗ List4 Qubit) ⊗ Qubit ¨4+2,0 Qubit ⊗ List4+1 Qubit)

8, 9 ;@ : Qubit; ∅ `E 〈@, nil〉 : Qubit ⊗ List0 Qubit 8, 9 ` 9 8, 9 ` Qubit
8, 9 ;= : Nat, @ : Qubit; ∅ `E fold4 lift(rotate=) 〈@, nil〉 : List9 Qubit ¨9+1,1 Qubit ⊗ List9 Qubit

(19)

where we implicitly use the fact that 8, 9 � max(1,max4< 9 4 + 2 + ( 9 − 1 − 4) · 1) = 9 + 1 to simplify the arrow’s
width annotation using vsub and the arrow subtyping rule. Next, we fold over revQs, which has the same
elements as qs and thus has length 9 , and we obtain that the fold produces a circuit whose width is bounded by
9 + 1. Therefore, qftStep has type

!((List9 Qubit ⊗ Qubit) ¨9+1,0 List9+1 Qubit), (20)

which entails that when we pass it as an argument to the topmost fold together with nil as the starting accumulator
we can conclude that the type of the qft function is

fold
8, 9 ; ∅; ∅ `E qftStep : !((List9 Qubit ⊗ Qubit) ¨9+1,0 List9+1 Qubit)

8; ∅; ∅ `E nil : List0 Qubit 8 ` 8 8 ` Qubit
8; ∅; ∅ `E fold9 qftStep nil : List8 Qubit ¨8,0 List8 Qubit

(21)

where we once again implicitly simplify the arrow type using the fact that 8 � max(0,max 9<8 9+1+(8−1− 9) ·1) = 8 .
This concludes our analysis and the resulting type tells us that qft produces a circuit of width at most 8 on inputs
of size 8 , without overall using any additional wires. If we instantiate 8 to 3, for example, we can apply qft to a list
of 3 qubits to obtain the circuit shown in Figure 21, whose width is exactly 3.

To conclude this section, note that for ease of exposition qft actually produces the reversed QFT circuit, in
which the gates appear in reverse order. This is not a problem, since the two circuits are equivalent resource-wise
and the actual QFT circuit can be recovered by boxing the result of qft and reversing it via a primitive operator.
Besides, note that Quipper’s internal implementation of the QFT is also reversed [20].

7 IMPLEMENTATION
This section introduces the Quipper Resource Analysis tool, or QuRA (IPA:/’kura/, “care”), a static analysis tool
implemented based on Proto-Quipper-R’s type system.1 QuRA takes as input a program written in a concrete
variant of Proto-Quipper-R’s syntax and outputs the type of the program and an upper bound to the width
1At the time of writing, the latest version of QuRA actually implements a superset of Proto-Quipper-R’s theory, with support for the analysis
of metrics other than width, such as gate count and even depth. In this section, however, we will limit ourselves to an account of the width
estimation capabilities of the tool.
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of the circuit it builds. We limit ourselves to presenting the most relevant aspects of the implementation of
QuRA and three practical applications of the tool, with no ambition to provide an exhaustive introduction to
it. The interested reader is referred to QuRA’s documentation, which is available alongside its source code at
https://github.com/andreacolledan/qura. QuRA is implemented in Haskell, and at the time of writing relies on
the CVC5 SMT solver [7] to discharge semantic judgments.

7.1 InternalizingQuantification over Indices
One major hurdle in implementing Proto-Quipper-R’s type system as part of a tool is the necessity to internalize
the meta-theoretical results on index substitution (corresponding to lemmata 5.2 through 5.5) into the typing
rules. This is because meta-theoretical index quantification, although convenient when proving soundness and
correctness, is not a viable option when programming in practice: the scope of index variables is unclear and
writing index-polymorphic functions is counter-intuitive and error-prone (e.g. it is really easy to incur accidental
variable capture).

To internalize index quantification, we introduce explicit index abstraction and application into the language, in
the form of the Λ8 ." and + @ � constructs, respectively. The two constructs respectively introduce and eliminate
a new type form Π�

�
8 .�, which very closely resembles a dependent function type in which the argument 8 is

always an index. In the wider context of the Proto-Quipper-R type system, these two new constructs can be
thought of as obeying the following typing rules:

iabs
Θ, 8; Γ;& `2 " : �; �

Θ; Γ;& `E Λ8 ." : Π�#(Γ;& )8 .�

iapp
Θ; Γ;& `E + : Π �

�
8 .� Θ ` �

Θ; Γ;& `2 + @ � : �{�/8}; � {�/8}

This addition also influences the treatment of the fold operator: we have seen in the previous sections that fold8
binds 8 in the type of the step function. Now that a mechanism for explicit index binding is available, it is more
convenient to separate concerns and relieve the fold operator from this responsibility. In the wake of this change,
fold is also relieved from the responsibility of introducing a fresh index variable in the domain of its arrow type:
instead of taking two arguments and constructing a function, fold now takes as input three arguments + ,,
and - and constructs the computation where + is folded over - , using, as the starting accumulator. This new
version of fold can be thought of as obeying the following typing rule:

fold
Θ;Φ; ∅ `E + : !(Π0

08 .(� ⊗ �) ¨� ,0 �{8 + 1/8}) Θ;Φ, Γ1;&1 `E , : �{0/8}
Θ;Φ, Γ2;&2 `E - : List� � � = max(#(Γ1;&1),max8<� � + (� − 1 − 8) · #(�))

Θ;Φ, Γ1, Γ2;&1, &2 `2 fold + , - : �{�/8}; �

A Proto-Quipper-R function such as fold8 (lift"), of type List� � ¨� ,� � therefore corresponds to a QuRA
term of the form _GList� � . fold (Λ8 . lift"), G , provided that any and all free index variables in � are already
available in the context.

7.2 Type Inference and SMT solving
We implement Proto-Quipper-R’s typing rules in the form of a type inference algorithm. For the sake of practicality,
in the implementation of QuRA we do not distinguish syntactically between terms and values as we did in the
previous sections. This has two consequences:

• The return operator is no longer needed: a standalone value simply receives a width upper bound equal
to the wire count of its typing environment, as if it had been implicitly returned.

• Terms can be built from other (effectful) terms, and as such the width of the circuits built by sub-terms
must be taken into consideration when computing the upper bound of a compound term, in a way
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similar to what we do in the let rule in Section 4. In fact, the let rule directly inspires the design of
the new inference rules. For example, a term such as apply(", # ) is treated as if it were shorthand for
let G = " in let ~ = # in apply(G,~) and the corresponding rule is designed accordingly.

That being said, QuRA performs two passes on the AST of a program, following a standard approach in the
implementation of refinement type systems [39]:

(1) In the first pass we ignore indices and width upper bounds and just perform Hindley-Milner-like inference
on the program. This pass is used to check for basic type errors and to annotate some of the nodes of the
AST with their type, as to simplify the subsequent pass.

(2) In the second pass, we assume that the basic types are in the correct form and focus on the synthesis of
index annotations and width upper bounds.

The second pass is where the actual width estimation logic takes place. As a way to exemplify more formally
the implementation of the tool, an excerpt of the algorithmic inference rules for the second pass can be found in
Figure 22. A judgment of the form Θ; Γ0 \ Γ1;&0 \&1 ` " ⇒ �; � means that the inference algorithm takes as input
Θ, Γ0, &0, " and determines that" has type � and width upper bound � , consuming some of the linear resources
contained in Γ0 and &0. Indeed, alongside � and � , the algorithm also outputs Γ1 and &1, which contain the
linear resources in Γ0 and &0, respectively, that were not consumed while typing " . This is a standard technique
employed in the implementation of linear type systems.

7.2.1 SMT Encoding of Semantic Judgments. Notice how the semantic judgments of the form Θ � � ≤ � are
replaced by a call to the valid function. This function represents a call to the SMT solver, which we delegate
the proof of semantic judgments to. What validΘ (� ≤ � ) does is query the validity of the logical formula � ≤ � ,
where the free variables of � and � are in Θ.

This requires a nontrivial encoding of index terms in the SMTLib2 format [8]: while index variables are simply
encoded as integer variables subject to non-negativity constraints and most arithmetic operations have a one-to-
one correspondence with operations in the target language, natural subtraction, binary and bounded of maxima
do not. For natural subtraction and the binary maximum, the encoding is still rather simple. Let L�MSMTLib denote
the encoding of � as an SMTLib2 expression. Then we have

L� − � MSMTLib ¬ (ite (< L�MSMTLib L� MSMTLib) 0 (- L�MSMTLib L� MSMTLib)), (22)
Lmax(� , � )MSMTLib ¬ (ite (< L�MSMTLib L� MSMTLib) L� MSMTLib L�MSMTLib), (23)

where ite is the conditional operator in SMTLib2 (note the use of prefix notation). The case of the bounded
maximum is more interesting: an expression such as max8<� � cannot be encoded directly in SMTLib2, and a
higher-order, inductive definition of the operator causes the solver to get stuck on all but the trivial cases. Rather,
for each such expression we introduce two auxiliary variables max and argmax, and we constrain them to be
equal to the value of max8<� � and to the value of 8 that maximizes � , respectively. We do so through the following
constraints, which we present in standard mathematical notation for simplicity:

0 ≤ max, (24)
� ≤ 0 =⇒ max = 0, (25)
� > 0 =⇒ max = � {argmax/8}, (26)
0 ≤ argmax < � , (27)

∀9 .0 ≤ 9 < � =⇒ � { 9/8} ≤ � {argmax/8}. (28)

With these constraints in place, every occurrence of max8<� � can be replaced by the max variable. Lastly,
we express the problem of deciding the validity of � ≤ � as the equivalent satisfiability problem for ¬(� ≤ � )
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Inference Judgment Θ; Γ \ Γ′;& \& ′ ` " ⇒ �; �

var

Θ;Φ, G : �, Γ0 \ Γ0;&0 \&0 ` G ⇒ �; #(�)

lab

Θ;Φ, Γ0 \ Γ0;&0, ℓ : F \&0 ` ℓ ⇒ F ; 1

abs
Θ;Φ, G : �, Γ0 \ Γ1;&0 \&1 ` " ⇒ �; �
G ∉ Γ1 � = #(Γ0 \ Γ1;&0 \&1)

Θ;Φ, Γ0 \ Γ1;&0 \&1 ` _G� ." ⇒ � ¨� ,� �; �

app
Θ;Φ, Γ0 \ Γ1;&0 \&1 ` " ⇒ � ¨� ,� �;� Θ;Φ, Γ1 \ Γ2;&1 \&2 ` # ⇒ �′; �

Θ `B �′ <: � � = max(� + #(Γ1 \ Γ2;&1 \&2), � + �, � )
Θ;Φ, Γ0 \ Γ2;&0 \&2 ` " # ⇒ �;�

apply
Θ;Φ, Γ0 \ Γ1;&0 \&1 ` " ⇒ Circ� (),* ); � Θ;Φ, Γ1 \ Γ2;&1 \&2 ` # ⇒ ) ′;�

Θ `B ) ′ <: ) � = max(� + #(Γ1 \ Γ2;&1 \&2), �, � )
Θ;Φ, Γ0 \ Γ2;&0 \&2 ` apply(", # ) ⇒ * ;�

box
Θ;Φ, Γ0 \ Γ1;&0 \&1 ` " ⇒ !() ′ ¨� ,� * );� Θ `B ) <: ) ′

Θ;Φ, Γ0 \ Γ1;&0 \&1 ` box) " ⇒ Circ� (),* );�

lift
Θ;Φ, Γ0 \ Γ0;&0 \&0 ` " ⇒ �; � validΘ (� = 0)

Θ;Φ, Γ0 \ Γ0;&0 \&0 ` lift" ⇒ !�; 0

force
Θ;Φ, Γ0 \ Γ1;&0 \&1 ` " ⇒ !�; �

Θ;Φ, Γ0 \ Γ1;&0 \&1 ` force" ⇒ �; �

fold
Θ;Φ, Γ0 \ Γ1;&0 \&1 ` " ⇒ !(Π$1

$2
8 .(� ⊗ �) ¨� ,$3 �

′); � Θ, 8 `B �′ <: �{8 + 1/8}
validΘ ($1 = 0) validΘ ($2 = 0) validΘ ($3 = 0)
Θ;Φ, Γ1 \ Γ2;&1 \&2 ` # ⇒ �′′;� Θ `B �′′ <: �{0/8}
Θ;Φ, Γ2 \ Γ3;&2 \&3 ` % ⇒ List� �′;� Θ `B �′ <: �

� = max(� + #(Γ1 \ Γ3;&1 \&3), � + #(Γ2 \ Γ3;&2 \&3), #(�′′) +�,max8<� � + (� − 1 − 8) · #(�))
Θ;Φ, Γ0 \ Γ3;&0 \&3 ` fold " # % ⇒ �{�/8};�

Fig. 22. An excerpt of the type inference rules

and query the solver. A sat response denotes that � ≤ � is falsifiable, and thus not valid, so the corresponding
judgment does not hold, while an unsat response proves the judgment.

7.2.2 The Limitations of SMT Solvers. Reasoning with SMT solvers can be highly efficient as long as the queried
theories belong to SMT-decidable logics. Following the principles of refinement typing [39], QuRA attempts
to produce queries belonging to the decidable logic of equality and linear arithmetic, while exploiting Proto-
Quipper-R’s typing rules and carefully designed encodings to deal with undecidable features like induction and
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higher-order reasoning. The aforementioned case of bounded maxima is a characteristic example of this approach:
when naively implemented in SMTLib2, bounded maxima can make the solver diverge, rendering verification
unpredictable. Thanks to the encoding described in equations 24–28, however, queries involving bounded maxima
become decidable via quantifier elimination [62].

Secondly, while SMT solvers excel in handling linear arithmetic, they can struggle with nonlinear constraints.
Due to the nature of width analysis, most of the upper bounds we actually need to prove in Proto-Quipper-R are
defined in terms of sums and maxima of natural numbers and index variables, which are handled gracefully by
CVC5. At the same time, the SMT queries that we work with can contain multiplication, usually in the form of
the wire count of list types, as #(List� �) is defined as � · #(�). Even in this case, though, #(�) is almost always a
constant factor, so the resulting expression remains linear. This is due to the fact that we mostly deal with lists
whose elements are qubits or tuples of qubits, which have a constant wire count. In theory, if we were working
with lists of lists (i.e. bidimensional qubit arrays of variable, independent dimensions), then we would incur
nonlinearity, but in practice this is a very rare scenario.

Lastly, while solvers (and CVC5 in particular) are efficient, queries to them require expensive context switches.
We mitigate this problem by employing a custom solver for closed constraints, which attempts to evaluate
both sides of a constraint to a number according to standard arithmetic rules before checking that the queried
inequality holds. Only when this simpler solver fails (usually because either side of the constraint contains an
index variable) do we forward the query to the more powerful CVC5.

All things considered, we can say that the implementation of QuRA is designed to bypass the limitations of
SMT solving. To some extent, this has been confirmed empirically: when using QuRA to analyze the resource
requirements of real quantum algorithms (see Section 7.3) we never encountered a situation in which we could
not verify a width upper bound specifically due to SMT solving limitations.

7.3 Practical Verification of Quantum Algorithms
We now proceed to illustrate how QuRA can be used to verify the resource consumption of three real-world
quantum algorithms. Note that because QuRA fundamentally implements the theory that we have presented
in this paper, this section is meant to showcase not only the practicality of the tool, but also the power of
Proto-Quipper-R’s theory.

7.3.1 The QFT Algorithm. We start with the familiar example of the QFT algorithm from Section 6, which is
implemented by the program in Listing 1. The concrete syntax adopted in QuRA is reminiscent of Haskell and
should be fairly self explanatory. We just point out that “forall i. M” stands for the index abstraction “Λ8 ."”,
whereas “List[_<I] A” stands for the sized list type “List� �”. The unusual syntax for list types is due to the fact
that QuRA actually supports dependent sized lists, which we do not use or discuss in this section. Note only that
these lists grow to the right, as opposed to the left, to better support the dependent aspect. Other than that, lists
are exactly as in Proto-Quipper-R.

By running QuRA on the program from Listing 1, we get the expected result that qft has type

!(Π0
0=.List= Qubit ¨=,0 List= Qubit), (29)

meaning that it is a duplicable function that for all = takes as input a list of = qubits, builds a circuit of width at
most =, and outputs a list of = qubits, which is exactly what we derived at the end of Section 6.

7.3.2 Quantum Adder. A more interesting application of our tool is an implementation of the quantum addition
algorithm due to Vedral et al. [66]. Although far from the current state of the art in terms of quantum arithmetic,
this algorithm does make extensive use of ancillae, requiring 3= + 1 qubits to add together two =-qubit quantum
registers, and as such is a good testing ground for our analysis. We omit the code (which is however available in
QuRA’s repository) for reasons of space, but QuRA is able to infer that the adder function, which assembles the
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Listing 1. A program implementing the QFT algorithm that can be given as input to QuRA.

1 --- Quantum Fourier Transform with width analysis
2
3 --- Relevant parameters:
4 --- n : size of the input to the QFT
5 --- iter : current iteration of the QFT
6
7 --- HELPER FUNCTIONS ---
8
9 -- invert the list of intermediate qubits at iteration iter

10 let qrev = lift forall iter.
11 \reg :: List[_<iter] Qubit.
12 let revStep = lift forall step.
13 \(rev , q) :: (List[_<step] Qubit , Qubit).
14 rev:q in
15 fold(revStep , [], reg)
16 in
17
18 -- apply the controlled rotation gate to the target qubit trg at iteration iter
19 let rotate = forall iter. lift forall step.
20 \((ctrls , trg), ctrl)::(( List[_<step] Qubit , Qubit), Qubit).
21 let (ctrl , trg) = (force cr @(iter+1-step) @0 @0) ctrl trg in
22 (ctrls:ctrl , trg)
23 in
24
25 --- QUANTUM FOURIER TRANSFORM ---
26
27 -- apply the Quantum Fourier Transform to n qubits
28 let qft = lift forall n.
29 \reg :: List[_<n] Qubit.
30 let qftIter = lift forall iter. -- define the iteration of the QFT
31 \(ctrls , trg)::( List[_<iter] Qubit , Qubit).
32 let revctrls = (force qrev @iter) ctrls in
33 let (ctrls , trg) = fold(rotate @iter , ([], trg), revctrls) in
34 let trg = (force hadamard @0) trg in
35 ctrls:trg
36 in fold(qftIter , [], reg)
37 in
38
39 qft

main adder circuit, has type

!(Π0
0=.(List=+1 Qubit ⊗ List8+1 Qubit) ¨(3· (=+1)+1),0 (List=+1 Qubit ⊗ List=+2 Qubit)), (30)

meaning that it is a duplicable function that for any input size = takes two lists of = + 1 qubits and builds a circuit
of width at most 3(= + 1) + 1 that outputs two lists of respectively = + 1 and = + 2 qubits (the extra qubit is needed
to store the potential carry). Note that we use = + 1 instead of = in the type of the input lists just to enforce that
the input registers be non-empty.
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|1〉 �

*5 *5

|0〉 � � - - � � - - �

|0〉 � � - - � � - - �

|0〉 � � - - � � - - �

Fig. 23. The circuit built by the grover function applied to an oracle *5 of input size = = 3.

7.3.3 Grover’s Algorithm. We conclude by verifying a higher-order quantum algorithm. Grover’s algorithm [32] is
used to invert a function 5 that maps =-bit strings to booleans, given that there is exactly one G such that 5 (G) = 1.
Analyzing the resource consumption of Grover’s algorithm is more challenging than the previous examples, as
it does not take as input a simple register of qubits, but rather an oracle, that is, a subcircuit implementing the
function 5 . In our implementation of the algorithm, which is given in Listing 2, this oracle is represented by the
oracle parameter of the grover function, which has type

Circow (List= Qubit ⊗ Qubit, List= Qubit ⊗ Qubit). (31)

This means that oracle is a boxed circuit of width at most ow acting on a register of = qubits plus an ancilla,
which accounts for the standard way classical functions are implemented as reversible unitary operators. Note
that both = and ow are parameters of the grover function, together with A , the number of iterations of the
algorithm.

The algorithm itself consists of a preparation stage, followed by A Grover iterations, followed by a measurement
stage. A Grover iteration, in turn, consists of a call to the oracle, followed by an application of the diffusion
operator. Figure 23 shows the circuit built by the grover function when applied to an oracle of input size = = 3.

Let us reason briefly about the size of such a circuit. The preparation and measurement stages are uninteresting
in this regard. Furthermore, because the diffusion operator has width equal to its input size, the width of the
circuit built by the grover function is intuitively dominated by the width of the oracle. If we run QuRA on the
program from Listing 2, we find that our intuition is confirmed, as the grover function has type

!(Π0
0A .Π

0
0=.Π

0
0ow.Circow (List= Qubit ⊗ Qubit, List= Qubit ⊗ Qubit) ¨max (=+1,ow),0 List= Bit), (32)

which tells us that it is a duplicable function that takes as input an oracle of input size = and width ow, and builds
a circuit of width at most max(= + 1, ow). Note that because ow is bound to be at least = + 1, the width of the
circuit is effectively upper bounded by ow.

7.4 Benchmarks
In all of the examined example programs, few annotations besides those on function arguments are needed by the
inference algorithm: occasionally, the type of step-functions needs to be reformulated in a way that is compatible
with the fold rule, and sometimes we need to postulate that a list is guaranteed to be non-empty. Table 1 shows
the performance of QuRA on a small benchmark suite of quantum programs, which is available in the repository,
under examples.
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Listing 2. A program implementing Grover’s algorithm

1 --- Grover search algorithm with width analysis ---
2
3 --- Relevant parameters:
4 --- n : input size of the oracle
5 --- ow : width of the oracle
6
7 --- HELPER FUNCTIONS (omitted) ---
8 --- [...]
9

10 --- GROVER 'S ALGORITHM ---
11
12 -- the diffusion operator on n qubits with ancilla a (all qubits at depth d)
13 let diffusion = lift forall n.
14 ((\ reg :: List[_<n] Qubit. \a :: Qubit.
15 let reg = (force mapHadamard @n @0) reg in
16 -- begin negatively controlled not
17 let reg = (force mapQnot @n @0) reg in
18 let (reg ,a) = (force mcnot @n @0 @0) reg a in
19 let reg = (force mapQnot @n @0) reg in
20 -- end negatively controlled not
21 let reg = (force mapHadamard @n @0) reg in
22 (reg , a)))
23 in
24
25 -- perform a single grover iteration on n qubits , using an ancilla a and an oracle of width ow
26 let groverIteration = lift forall n. forall ow.
27 \oracle :: Circ[ow](( List[_<n] Qubit , Qubit), (List[_<n] Qubit , Qubit)).
28 \reg :: List[_<n] Qubit.
29 \a :: Qubit.
30 let (reg , a) = apply(oracle , (reg , a)) in
31 (force diffusion @n) reg a
32 in
33
34 -- run Grover 's algorithm on an oracle of input size n and width ow , for r iterations
35 let grover = lift forall r. forall n. forall ow.
36 \oracle :: Circ[ow](( List[_<n] Qubit , Qubit), (List[_<n] Qubit , Qubit)).
37 -- prepare working qubits
38 let wqs = force qinit0Many @n in
39 let wqs = (force mapHadamard @n @0) wqs in
40 -- prepare ancilla
41 let a = force qinit1 in
42 let a = (force hadamard @0) a in
43 -- iterate Grover 's algorithm
44 let iteration = lift forall step. \((wqs , a), _) :: ((List[_<n] Qubit , Qubit), ()).
45 (force groverIteration @n @ow) oracle wqs a in
46 let (wqs , a) = fold(iteration , (wqs , a), range @r) in
47 let _ = (force qdiscard @0) a in
48 (force mapMeasure @n @0) wqs
49 in
50
51 grover
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Table 1. Performance of QuRA on the test quantum programs. Tests are run on an M1 MacBook Air with 16GB of RAM.

Program LOC Checking time (ms) Width upper bound

dumbnot 10 86 2
teleportation 31 85 3
qft 23 96 =

grover 55 139 max(= + 1, ow)
adder 79 217 3= + 1

7.5 Dynamic vs. Static Analysis
In the beginning of this paper we stated that Quipper is effectively used to write complex programs that translate
to circuits comprising of millions of qubits. If we resort to a dynamic approach to analyzing the size of the circuits
built by one such program, we have to run it and then traverse the resulting circuit to compute its size, two
operations that, although classical, can be costly, taking up to minutes on larger input sizes [31]. Furthermore,
the resulting estimate is only valid for the specific input size we ran the program on.

On the other hand, if we rely on a static resource analysis tool such as QuRA, we can just analyze the program
in a matter of milliseconds, without running it, and obtain a width upper bound that is valid for all input sizes.
For example, the results that we obtained in Section 7.3.2 tell us that in order to safely add together two 32-qubit
integers, we need a quantum computer with at least 97 logical qubits. If we switch to a 2048-qubit addition, we
need 6145 logical qubits. If for some reason we need to add together two 106-qubit integers, we need 3 × 106 + 1
logical qubits, and so on and so forth. We obtain all of these estimates by just instantiating = in 3= + 1 to the
appropriate input size, without ever running the adder program. This is the real advantage of static analysis.

8 RELATED WORK
The metatheory of quantum circuit description languages, and in particular of Quipper-style languages, has been
the subject of quite some work in recent years, starting with Ross’s thesis on Proto-Quipper-S [54] and going
forward with Selinger and Rios’s Proto-Quipper-M [52]. In the last five years, some proposals have also appeared
for more expressive type systems or for language extensions that can handle non-standard language features,
such as the so-called dynamic lifting [11, 25, 42], available in the Quipper language, or dependent types [26].
Although some embryonic contributions in the direction of analyzing the size of circuits produced using Quipper
have been given [63], no contribution tackles the problem of deriving resource bounds parametric on the size of
the input. In this, the ability to have types which depend on the input, certainly a feature of Proto-Quipper-D [26],
is not useful for the analysis of intensional attributes of the underlying circuit, simply because such attributes are
not visible in types.

If we broaden the horizon to quantum programming languages other than Quipper, we come across, for
example, the recent works of Avanzini et al. [6] and Liu et al. [43] on adapting the classic weakest precondition
technique to the cost analysis of quantum programs, which however focus on programs in an imperative language.
The work of Dal Lago et al. [17] on a quantum language which characterizes complexity classes for quantum
polynomial time should certainly be remembered: even though the language allows the use of higher-order
functions, the manipulation of quantum data occurs directly and not through circuits. Similar considerations
hold for the recent work of Hainry et al. [34] and Yamakami’s algebra of functions [67] in the style of Bellantoni
and Cook [9], both characterizing quantum polynomial time.

If we broaden our scope further and become interested in the analysis of the cost of classical or probabilistic
programs, we face a vast literature, with contributions employing a variety of techniques on heterogeneous
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languages and calculi: from functional programs [3, 37, 38] and term rewriting systems [4, 5, 48] to probabilistic
[40] and object-oriented programs [23, 33]. In this context, the resource under analysis is often assumed to be
computation time, which is relatively easy to analyze given its strictly monotonic nature. Circuit width, although
monotonically non-decreasing, evolves in a way that depends on a non-monotonic quantity, i.e. the number of
wires discarded by a circuit. As a result, width has the flavor of space and its analysis is less straightforward.

It is also worth mentioning that linear dependent types can be seen as a specialized version of refinement types
[22], which have been used extensively in the literature to automatically verify interesting properties of programs
[44, 70]. In particular, the work of Vazou et al. on Liquid Haskell [64, 65] has been of particular inspiration, on
account of Quipper being embedded precisely in Haskell. The liquid type system [53] of Liquid Haskell relies
on SMT solvers to discharge proof obligations and has been used fruitfully to reason about both the correctness
and the resource consumption (mainly time complexity) of concrete, practical programs [35].

9 CONCLUSION AND FUTURE WORK
In this paper we introduced a linear dependent type system based on index refinements and effect typing for
the paradigmatic calculus Proto-Quipper, with the purpose of using it to derive upper bounds on the width
of the circuits produced by programs. We proved not only the classic type safety properties, but also that the
upper bounds derived via the system are correct. We also showed how our system can verify realistic quantum
algorithms, through the QuRA tool. Ours is the first type system designed specifically for the purpose of resource
analysis to target circuit description languages such as Quipper. Technically, the main novelties are the smooth
combination of effect typing and index refinements, but also the proof of correctness, in which reducibility and
effects are shown to play well together.

9.1 Generalization to Other Resource Types
This work focuses on estimating the width of the circuits produced by Quipper programs. This choice is dictated
by the fact that the width of a circuit corresponds to the maximum number of distinct wires, and therefore
individual qubits, required to execute it. Nowadays, this is considered as one of the most precious resources in
quantum computing, and as such must be kept under control. However, this does not mean that our system could
not be adapted to the estimation of other parameters. This section outlines how this may be possible.

First, estimating strictly monotonic resources, such as the total number of gates in a circuit, is possible and in
fact simpler than estimating width. A single index term � that measures the number of gates in the circuit built by
a computation would be enough to carry out this analysis. This index would be appropriately increased any time
an apply instruction is executed, while sequencing two terms via let would simply add together the respective
indices.

If we were instead interested in the depth of a circuit, then we would need a slightly different approach.
Although in principle it would be possible to still rely on a single index � , this would give rise to a very coarse
approximation, effectively collapsing the analysis of depth to a gate count analysis. A more precise approximation
could instead be obtained by keeping track of depth locally. More specifically, it would be sufficient to decorate
each occurrence of a wire typeF with an index term � so that if a label ℓ were typed withF � , it would mean that
the sub-circuit rooted in ℓ has a depth at most equal to � . This last approach could also be used to keep track of
the fidelity of qubits, if we allowed index terms to take on real values, although we consider this extension to lie
well beyond the scope of this work.

Before moving on, it should be noted that the resources considered, i.e. the depth, width, and gate count of a
circuit, can be further refined so as to take into account only some kinds of wires and gates. Depending on the
underlying technology, different quantum architectures face different bottlenecks, so operations that are deemed
costly on one kind of quantum computer may be inexpensive on another, and vice versa. For instance, one may
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want to keep track of the maximum number of qubits needed, ignoring the less critical number of classical bits,
or to only focus on the number of T-gates required to describe a circuit, which is a common bottleneck in modern
quantum architectures.

9.2 Further Work
Among other topics for further work, we can identify two main research directions. On the one hand we have the
prospect of denotational semantics: most incarnations of Proto-Quipper are endowed with categorical semantics
that model both circuits and the terms of the language that build them [25, 26, 42, 52]. We already mentioned
how the intensional nature of the quantity under analysis renders the formulation of an abstract categorical
semantics for Proto-Quipper-R and its circuits a nontrivial task, but we believe that one such semantics would
help Proto-Quipper-R fit better in the Proto-Quipper landscape.

On the other hand, in Section 9.1 we briefly discussed how our system could be modified to handle the analysis
of different resource types. It would be interesting to pursue this path both theoretically and in the implementation
of QuRA. If we could actually generalize our resource analysis, that is, make it parametric on the kind of resource
being analyzed, we would be able to analyze the same program in the same language under different resource
usage metrics, in a very flexible fashion.
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