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We introduce Refinement Reflection, a new framework for building SMT-based deductive verifiers. The key idea
is to reflect the code implementing a user-defined function into the function’s (output) refinement type. As a
consequence, at uses of the function, the function definition is instantiated in the SMT logic in a precise fashion
that permits decidable verification. Reflection allows the user to write equational proofs of programs just by
writing other programs e.g. using pattern-matching and recursion to perform case-splitting and induction.
Thus, via the propositions-as-types principle, we show that reflection permits the specification of arbitrary
functional correctness properties. Finally, we introduce a proof-search algorithm called Proof by Logical
Evaluation that uses techniques from model checking and abstract interpretation, to completely automate
equational reasoning. We have implemented reflection in L1ouib HAsKELL and used it to verify that the widely
used instances of the Monoid, Applicative, Functor, and Monad typeclasses actually satisfy key algebraic
laws required to make the clients safe, and have used reflection to build the first library that actually verifies
assumptions about associativity and ordering that are crucial for safe deterministic parallelism.

1 INTRODUCTION

Deductive verifiers fall roughly into two camps. Satisfiability Modulo Theory (SMT) based verifiers
(e.g. DAFNY and F*) use fast decision procedures to automate the verification of programs that
only require reasoning over a fixed set of theories like linear arithmetic, string, set and bitvec-
tor operations. These verifiers, however, encode the semantics of user-defined functions with
universally-quantified axioms and use incomplete (albeit effective) heuristics to instantiate those
axioms. These heuristics make it difficult to characterize the kinds of proofs that can be automated,
and hence, explain why a given proof attempt fails [Leino and Pit-Claudel 2016]. At the other
end, we have Type-Theory (TT) based theorem provers (e.g. CoQ and AGpa) that use type-level
computation (normalization) to facilitate principled reasoning about terminating user-defined
functions, but which require the user to supply lemmas or rewrite hints to discharge proofs over
decidable theories.

We introduce Refinement Reflection, a new framework for building SMT-based deductive veri-
fiers, which permits the specification of arbitrary properties and yet enables complete, automated
SMT-based reasoning about user-defined functions. In previous work, refinement types [Constable
and Smith 1987; Rushby et al. 1998] — which decorate basic types (e.g. Integer) with SMT-decidable
predicates (e.g. {v:Integer | @ < v && v < 100}) — were used to retrofit so-called shallow verifica-
tion, such as array bounds checking, into several languages: ML [Bengtson et al. 2008; Rondon et al.
2008; Xi and Pfenning 1998], C [Condit et al. 2007; Rondon et al. 2010], Haskell [Vazou et al. 2014],
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TypeScript [Vekris et al. 2016], and Racket [Kent et al. 2016]. In this work, we extend refinement
types with refinement reflection, leading to the following three contributions.

1. Refinement Reflection Our first contribution is the notion of refinement reflection. To reason
about user-defined functions, the function’s implementation is reflected into its (output) refinement-
type specification, thus converting the function’s type signature into a precise description of the
function’s behavior. This simple idea has a profound consequence: at uses of the function, the
standard rule for (dependent) function application yields a precise means of reasoning about the
function (§ 4).

2. Complete Specification Our second contribution is a library of combinators that lets program-
mers compose sophisticated proofs from basic refinements and function definitions. Our proof
combinators let programmers use existing language mechanisms, like branches (to encode case
splits), recursion (to encode induction), and functions (to encode auxiliary lemmas), to write proofs
that look very much like their pencil-and-paper analogues (§ 2). Furthermore, since proofs are
literally just programs, we use the principle of propositions-as-types [Wadler 2015] (known as the
Curry-Howard isomorphism [Howard 1980]) to show that SMT-based verifiers can express any
natural deduction proof, thus providing a pleasant implementation of natural deduction that can
be used for pedagogical purposes (§ 3).

3. Complete Verification While equational proofs can be very easy and expressive, writing them
out can quickly get exhausting. Our third contribution is Proof by Logical Evaluation (PLE) a new
proof-search algorithm that automates equational reasoning. The key idea in PLE is to mimic type-
level computation within SMT-logics by representing functions in a guarded form [Dijkstra 1975]
and repeatedly unfolding function application terms by instantiating them with their definition
corresponding to an enabled guard. We formalize a notion of equational proof and show that the
above strategy is complete: i.e. it is guaranteed to find an equational proof if one exists. Furthermore,
using techniques from the literature on Abstract Interpretation [Cousot and Cousot 1977] and
Model Checking [Clarke et al. 1992], we show that the above proof search corresponds to a universal
(or must) abstraction of the concrete semantics of the user-defined functions. Thus, since those
functions are total, we obtain the pleasing guarantee that proof search terminates (§ 6).

We evaluate our approach by implementing refinement reflection and PLE in L1Quip HASKELL [Va-
zou et al. 2014], thereby turning Haskell into a theorem prover. Repurposing an existing program-
ming language allows us to take advantage of a mature compiler and an ecosystem of libraries,
while keeping proofs and programs in the same language. We demonstrate the benefits of this
conversion by proving typeclass laws. Haskell’s typeclass machinery has led to a suite of expressive
abstractions and optimizations which, for correctness, crucially require typeclass instances to obey
key algebraic laws. We show how reflection and PLE can be used to verify that widely used instances
of the Monoid, Applicative, Functor, and Monad typeclasses satisfy the respective laws. Finally, we
use reflection to create the first deterministic parallelism library that actually verifies assumptions
about associativity and ordering that ensure determinism (§ 7).

Thus, our results demonstrate that Refinement Reflection and Proof by Logical Evaluation identify
a new design for deductive verifiers which, by combining the complementary strengths of SMT-
and TT- based approaches, enables complete verification of expressive specifications spanning
decidable theories and user defined functions.

2 OVERVIEW

We start with an overview of how SMT-based refinement reflection lets us write proofs as plain
functions and how PLE automates equational reasoning.

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: November 2017.



1:3

2.1 Refinement Types

First, we recall some preliminaries about specification and verification with refinement types.
Refinement types are the source program’s (here Haskell’s) types refined with logical predicates
drawn from an SMT-decidable logic [Constable and Smith 1987; Rushby et al. 1998]. For example,

we define Nat as the set of Integer values v that satisfy the predicate @ < v from the quantifier-free
logic of linear arithmetic and uninterpreted functions (QF-UFLIA [Barrett et al. 2010]):

type Nat = { v:Integer | @ < v }

Specification & Verification Throughout this section, to demonstrate the proof features we add
to Liouip HAsKELL, we will use the textbook Fibonacci function which we type as follows.

fib :: Nat — Nat

fib @ = 0

fib 1 =1

fib n = fib (n-1) + fib (n-2)

To ensure termination, the input type’s refinement specifies a pre-condition that the parameter
must be Nat. The output type’s refinement specifies a post-condition that the result is also a Nat.
Refinement type checking automatically verifies that if fib is invoked with a non-negative Integer,
then it terminates and yields a non-negative Integer.

Propositions We define a data type representing propositions as an alias for unit:

type Prop = ()
which can be refined with propositions about the code, e.g. that 2 + 2 equals 4

type Plus_ 2.2 = { v: Prop | 2+ 2 =47}
For simplicity, in L1ouip HASKELL, we abbreviate the above to type Plus_2.2 = { 2 + 2 = 4 }.
Universal & Existential Propositions Using the standard encoding of Howard [1980], known
as the Curry-Howard isomorphism, refinements encode universally-quantified propositions as
dependent function types of the form:

type Plus_comm = x:Integer — y:Integer —» { x +y =y + x }
As x and y refer to arbitrary inputs, any inhabitant of the above type is a proof that Integer addition

commutes.
Refinements encode existential quantification via dependent pairs of the form:

type Int_up = n:Integer — (m::Integer, {n < m})

The notation (m :: t, t') describes dependent pairs where the name m of the first element can
appear inside refinements of the second element. Thus, Int_up states the proposition that for every
integer n, there exists one that is larger than n.

While quantifiers cannot appear directly inside the refinements, dependent functions and pairs
allow us to specify quantified propositions. One limitation of this encoding is that quantifiers
cannot exist inside refinement’s logical connectives (like A and V). In § 3, we describe how to
encode logical connectives using data types, e.g. conjunction as a product and disjunction as a
union, how to specify arbitrary, quantified propositions using refinement types, i.e. have complete
specifications, and how to verify those propositions using refinement type checking.

Proofs We prove the above propositions by writing Haskell programs, for example

plus_2_2 :: Plus_2_2 plus_comm :: Plus_comm int_up :: Int_up
plus_2_2 = () plus_comm = \x y — () int_up = \n - (n+1,(Q))
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Standard refinement typing reduces the above to the respective verification conditions (VCs)
true=2+2=4 Vx,y.true=sx+y=y+x Ynn<n+1

which are easily deemed valid by the SMT solver, allowing us to prove the respective propositions.

Soundness and Lazy Evaluation Readers familiar with Haskell’s lazy semantics may be con-
cerned that “bottom”, which inhabits all types, makes our proofs suspect. Fortunately, as described
in Vazou et al. [2014], Liouip HaskELL, by default, checks that user defined functions provably ter-
minate and are total (i.e. return non-bottom values, and do not throw any exceptions), which makes
our proofs sound. L1guip HAskKELL checks that each function is terminating using a termination
metric i.e. a natural number that decreases at each recursive call. For instance, if we generalize the
signature of fib to Integers, as shown below, then L1ouiD HASKELL reports a termination error:

fib :: n:Integer — Integer

Liouip HASKELL generates a type error in the definition of fib since in the recursive calls fib (n-1)
and fib (n-2) the arguments n-1 and n-2 cannot be proved to be non-negative and less than n.
Both these proof obligations are satisfied when the domain of fib is restricted to natural numbers.

fib :: n:Nat — Nat / [n]

The above type signature is explicitly annotated with the user specified termination metric / [n]
declaring that n is the decreasing natural number. L1guip HaskELL heuristically assumes that the
termination metric is always the first argument of the function (that can be mapped to natural
numbers), thus, the above explicit termination metric can be omitted.

Not all Haskell functions terminate. The lazy annotation deactivates termination checking, e.g.
for the the diverge function shown below. Haskell terms marked as lazy could unsoundly be used
as proof terms, much like CoQ’s unsoundness with respect to Admitted. For example, the following
is accepted by Liguip HASKELL

lazy diverge
diverge :: x:Integer —» { x =0 }
diverge x = diverge x

Totality Checking Liouip HaskeLL further checks that all user-specified functions are totally
defined. For instance the below definition

fibPartial @ = 0

fibPartial 1 =1
generates a totality error. The above definition is completed, by GHC, with an error invocation

fibPartial @ = @
fibPartial 1 1
fibPartial _ = error "undefined"

Thus, to check totality, Liouip HASKELL simply ascribes the precondition false to error
error :: { v:String | false } — a

Thus, to typecheck fibPartial, L1guip HASKELL needs to prove that the call to error is dead-code,
i.e. happens under an inconsistent environment. As this check fails, Liouip HASKELL generates a
totality error. As with termination checking, L1Quip HASKELL provides an unsound error function
unsoundError with no false precondition.

In the sequel (and in our evaluation) we assume that proof terms are generated without any
unsound uses of lazy or unsafeError. However, note that lazy, diverging functions can be soundly
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verified, and diverging code can soundly co-exist with terminating proof terms: we refer the reader
to Vazou et al. [2014] for details.

2.2 Refinement Reflection

Suppose we wish to prove properties about the fib function, e.g. that {fib 2 = 1}. Standard
refinement type checking runs into two problems. First, for decidability and soundness, arbitrary
user-defined functions cannot belong in the refinement logic, i.e. we cannot refer to fib in a
refinement. Second, the only specification that a refinement type checker has about fib is its type
Nat — Nat which is too weak to verify {fib 2 = 13. To address both problems, we reflect fib
into the logic which sets the three steps of refinement reflection in motion.

Step 1: Definition The annotation creates an uninterpreted function fib :: Integer — Integerin
the refinement logic. By uninterpreted, we mean that the logical fib is not connected to the program
function fib; in the logic, fib only satisfies the congruence axiomV¥n,m.n=m = fibn = fibm.
On its own, the uninterpreted function is not terribly useful: we cannot check {fib 2 = 1} as the
SMT solver cannot prove the VC true = fib 2 = 1 which requires reasoning about fib’s definition.
Step 2: Reflection In the next key step, we reflect the definition of fib into its refinement type by
automatically strengthening the user defined type for fib to:

fib :: n:Nat —» { v:Nat | v = fib n & & fibP n }
where fibP is an alias for a refinement automatically derived from the function’s definition:
fibPn =n==0 = fibn =120
An=1= fibn=1
An >1 = fib n=fib (n-1) + fib (n-2)
Step 3: Application With the reflected refinement type, each application of fib in the code
automatically unfolds the definition of fib once in the logic. We prove {fib 2 = 1} by:

pf_fib2 :: { fib 2 =1}
pf_fib2 = let { t0 = fib 0; t1 = fib 1; t2 = fib 2 } in )

We write in bold red, f, to highlight places where the unfolding of f’s definition is important. Via
refinement typing, the above yields the following VC that is discharged by SMT, even though fib
is uninterpreted:

(fibP 0 A fibP 1 A fibP2) = (fib2=1)
The verification of pf_fib2 relies merely on the fact that fib is applied to (i.e. unfolded at) o, 1, and
2. The SMT solver automatically combines the facts, once they are in the antecedent. Thus, the
following is also verified:

pf_fib2' :: {v:[Nat]l | fib 2 =1 }
pf_fib2' = [ fib @, fib 1, fib 2 ]
In the next subsection, we will continue to use explicit, step-by-step proofs as above, but we will

introduce tools for proof composition. Then, in § 2.4 we will show how to eliminate unnecessary
details from such proofs, using Proof by Logical Evaluation (PLE).

2.3 Equational Proofs

We can structure proofs to follow the style of calculational or equational reasoning popularized in
classic texts [Bird 1989; Dijkstra 1976] and implemented in AGpA [Mu et al. 2009] and DAFNY [Leino
and Polikarpova 2016]. To this end, we have developed a library of proof combinators that permits
reasoning about equalities and linear arithmetic.
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“Equation” Combinators We equip LiQuip HaskEeLL with a family of equation combinators, ©, for
logical operators in the theory QF-UFLIA, o € {=, #, <, <, >, >}. In Haskell code, to avoid collisions
with existing operators, we further append a colon “:” to these operators, so that “=” becomes the
Haskell operator (=:). The refinement type of © requires that x © y holds and then ensures that the

returned value is equal to x. For example, we define (=:) as:
(=) :: xxa->y{a|x=y}r->{vial|]v=x}
X =1 _ =X

and use it to write the following equational proof:
fib2_1 :: { fib 2 =1}
fib2_1 = fib 2 =: fib 1 + fib @ =: 1 %% QED
where ** QED constructs proof terms by casting expressions to Prop in a post-fix fashion.

data QED = QED (x*%) :: a > QED — Prop
_ % QED = ()

Proof Arguments Often, we need to compose lemmas into larger theorems. For example, to prove
fib 3 = 2 we may wish to reuse fib2_1 as a lemma. We do so by defining a variant of (=:), written
as (=7), that takes an explicit proof argument:

(=?) :: x:a > y:a—>{Prop| x=y}r—>{via|v=x}3Z

X =? _ _ =X

We use the (=?) combinator to prove that fib 3 = 2.
fib3_2 :: { fib 3 =23}
fib3_2 = (fib 3 =: fib 2 + fib 1 =? 2 $ fib2_1) #*x QED
Here fib 2 is not important to unfold, because fib2_1 already provides the same information.

“Because” Combinators Observe that the proof term fib3_2 needs parentheses, since Haskell’s
($) operator has the lowest (i.e. 0) precedence. To omit parentheses in proof terms, we define a
“because” combinator that operates exactly like Haskell’s ($) operator, but has the same precedence
as the proof combinators (=:) and (=?).

() :: (Prop = a) — Prop — a
fry=f~fy
We use the “because” combinator to remove the parentheses from the proof term fib3_2.
fib3_2 :: { fib 3 =2}
fib3_2 = fib 3 =: fib 2 + fib 1 =? 2 - fib2_1 #x QED

Optional Proof Arguments Finally, we unify both combinators (=:) and (=?) using type classes to
define the class method (=.) that takes an optional proof argument, and generalize such definitions
for each operator in ©. We define the class OptEq to have one method (=.) that takes two arguments
of type a, to be compared for equality, and returns a value of type r.

class OptEq a r where
(=) :ta—>a->r

When instantiating the result type to be the same as the argument type a, (=.) behaves as (=:).
instance (a~b) = OptEq a b where

(=) :: xta->{y:a|x=y}>{vib]|]v=x}
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When the result type is instantiated to be a function that given a proof term Prop returns the
argument type a, (=.) behaves exactly as (=?).

instance (a~b) = OptEq a (Prop — b) where
(=) :: x:a—>y:a—>{Prop| x=y3}r>{vial|v=x}Z
Thus, (=.) takes two arguments to be compared for equality and, optionally, a proof term
argument. With this, the proof term fib3_2 is simplified to
fib3_2 :: { fib 3 =2 }
fib3_2 = fib 3 =. fib 2 + fib 1 =. 2 -- fib2_1 #x QED
Arithmetic and Ordering Next, lets see how we can use arithmetic and ordering to prove that

fib is (locally) increasing, i.e. for all n, fib n < fib (n + 1).

type Up f = n:Nat > { fn<f (n+1)73}

fibUp  :: Up fib

fibUp @ = fib 0 <. fib 1 *% QED
fibUp 1 = fib 1 <. fib 1 + fib @ =. fib 2 *% QED
fibUp n = fib n <. fib n + fib (n-1) =. fib (n+1) *x QED

Case Splitting The proof fibUp works by splitting cases on the value of n. In the cases @ and 1, we
simply assert the relevant inequalities. These are verified as the reflected refinement unfolds the
definition of fib at those inputs. The derived VCs are (automatically) proved as the SMT solver
concludes 0 < 1and 1 + 0 < 1 respectively. When n is greater than one, fib n is unfolded to
fib (n-1) + fib (n-2), which, as fib (n-2) is non-negative, completes the proof.

Induction & Higher Order Reasoning Refinement reflection smoothly accommodates induction
and higher-order reasoning. For example, let’s prove that every function f that increases locally
(ie.f z < f (z+1) for all z) also increases globally (i.e. f x < f yforallx < y)

type Mono = f:(Nat — Integer) — Up f — x:Nat » y:{ x<y } > {fx < fy?}

fMono :: Mono / [yl
fMono f up x y

| x+1 ==y = f x
| x+1 <y =f x

f (x+1) up x <. fy *%x QED
f (y-1) = fMono f up x (y-1) <. fy - up (y-1) ** QED

INIA

We prove the theorem by induction on y as specified by the annotation / [y] which states that
y is a well-founded termination metric that decreases at each recursive call [Vazou et al. 2014].
If x+1 ==y, then we call the up x proof argument. Otherwise, x+1 < y, and we use the induction
hypothesis i.e. apply fMono at y-1, after which transitivity of the less-than ordering finishes the
proof. We can apply the general fMono theorem to prove that fib increases monotonically:

fibMono :: n:Nat »> m:{ n<m } —» { fibn < fib m }
fibMono = fMono fib fibUp

2.4 Complete Verification: Automating Equational Reasoning

While equational proofs can be very easy, writing them out can quickly get exhausting. Lets face
it: fib3_2 is doing rather a lot of work just to prove that fib 3 equals 2! Happily, the calculational
nature of such proofs allows us to develop the following proof search algorithm PLE that is inspired
by model checking [Clarke et al. 1992]
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e Guard Normal Form: First, as shown in the definition of fibP in § 2.2, each reflected function
is transformed into a guard normal form A;(p; = f(x) = b;) i.e. a collection of guards p; and
their corresponding definition b;.

e Unfolding: Second, given a VC of the form ® = p, we iteratively unfold function application
terms in ® and p by instantiating them with the definition corresponding to an enabled guard,
where we check enabled-ness by querying the SMT solver. For example, given the VC true =
fib 3 = 2, the guard 3 > 1 of the application fib 3 is trivially enabled, i.e. is true, hence we
strengthen the hypothesis ® with the equality fib 3 = fib (3 — 1) + fib (3 — 2) corresponding
to unfolding the definition of fib at 3.

e Fixpoint: We repeat the unfolding process until either the VC is proved or we have reached
a fixpoint, i.e. no further unfolding is enabled. For example, the fixpoint computation of fib 3
unfolds the definition of fib at 3, 2, 1, and @ and then stops as no further guards are enabled.

Automatic Equational Reasoning In § 6 we formalize a notion of equational proof and show
that the proof search procedure PLE enjoys two key properties. First, that it is guaranteed to find
an equational proof if one can be constructed from unfoldings of function definitions. (The user
must still provide instantiations of lemmas and induction hypotheses.) Second, that under certain
conditions readily met in practice, it is guaranteed to terminate. These two properties allow us
to use PLE to predictably automate proofs: the programmer needs only to supply the relevant
induction hypotheses or helper lemma applications. The remaining long chains of calculations are
performed automatically via SMT-based PLE. That is, the user must provide case statements and
the recursive structure, but can elide the long chains of =. applications. To wit, with complete proof
search, the proofs of § 2.3 shrink to:

fib3_2 :: {fib 3 = 2} fMono :: Mono / [y]
fib3_2 = () fMono f up x y
| x+1 ==y = up x

| x+1 <y =up (y-1) &8&& fMono up x (y-1)
where the combinator p && g = () inserts the propositions p and q to the VC hypothesis.

PLE vs. Axiomatization Existing SMT based verifiers like DAFNY [Leino 2010] and F* [Swamy
et al. 2016] use the classical axiomatic approach to verify assertions over user-defined functions
like fib. In these systems, the function is encoded in the logic as a universally quantified formula
(or axiom): Vn. fibP n after which the SMT solver may instantiate the above axiom at 3, 2, 1 and @
in order to automatically prove {fib 3 = 23}.

The automation offered by axioms is a bit of a devil’s bargain, as axioms render VC checking
undecidable, and in practice automatic axiom instantiation can easily lead to infinite “matching
loops”. For example, the existence of a term fib n in a VC can trigger the above axiom, which may
then produce the terms fib (n — 1) and fib (n — 2), which may then recursively give rise to further
instantiations ad infinitum. To prevent matching loops an expert must carefully craft “triggers” or
alternatively, provide a “fuel” parameter that bounds the depth of instantiation [Amin et al. 2014].
Both these approaches ensure termination, but can cause the axiom to not be instantiated at the
right places, thereby rendering the VC checking incomplete. The incompleteness is illustrated by
the following example from the DAFNY benchmark suite [Leino 2016]

posn | n<a®o =0 test o y:{y >5} - {pos n =3+ pos (n-3)}
| otherwise = 1 + pos (n-1) test _ = O

DaFNy (and F*’s) fuel-based approach fails to check the above, when the fuel value is less than 3.
One could simply raise-the-fuel-and-try-again but at what point does the user know when to stop?
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app_assoc :: AppendAssoc app_assoc :: AppendAssoc
app_assoc [] ys zs app_assoc [] ys zs = ()

= ([] ++ ys) ++ zs app_assoc (X:XS) yS zS = app_assoC XS yS zs

=. ys ++ zs

=. [1 ++ (ys ++ zs) *x QED app_right_id :: AppendNilld
app_assoc (x:Xs) ys zs app_right_id [] =0

= ((x : xs) ++ ys) ++ zs app_right_id (x:xs) = app_right_id xs

=. (x : (xs ++ ys)) ++ zs

= x i((xs ++ ys) ++ z5) map_fusion :: MapFusion
“ app_assoc XS ys zs map_fusion f g [] =0
=, X 1 (xs ++ (ys  ++ z5)) map_fusion f g (x:xs) = map_fusion f g xs

. (x 1 xs) ++ (ys ++ zs) *x QED

Fig. 1. (L) Equational proof of append associativity. ~ (R) PLE proof, also of append-id and map-fusion.

@

In contrast, PLE (1) does not require any fuel parameter, (2) is able to automatically perform the
required unfolding to verify this example, and (3) is guaranteed to terminate.

2.5 Case Study: Laws for Lists

Reflection and PLE are not limited to integers. We end the overview by showing how they verify
textbook properties of lists equipped with append (++) and map functions:

reflect (++) :: [a] — [a] — [a] reflect map :: (a —» b) — [a] — [b]
] ++ ys = ys map f [] =[]
(x:xs) ++ ys = x : (Xs ++ ys) map f (x:xs) = f x : map f xs

In § 5.1 we will describe how the reflection mechanism illustrated via fibP is extended to account
for ADTs using SMT-decidable selection and projection operations, which reflect the definition
of xs ++ ys into the refinement as: if isNil xs then ys else sell xs : (sel2 xs ++ ys). We
require an explicit reflect annotation as not all Haskell functions can be reflected into logic, either
because it is unsound to do so (e.g. due to divergence) or because of limitations of our current
implementation. Recall that LiQuip HASKELL verifies that all reflected functions, like (++) and map
here, are total [Vazou et al. 2014] and rejects the code otherwise.

Laws We can specify various laws about lists with refinement types. For example, the below
laws state that (1) appending to the right is an identity operation, (2) appending is an associative
operation, and (3) map distributes over function composition:

type AppendNilld = xs:_ — { xs ++ [] = xs }
type AppendAssoc = xs:_ — ys:_ — zs:_ — { xs ++ (ys ++ zs) = (xs ++ ys) ++ zs }

type MapFusion = f: — g:_ > xs:_ > {map (f . g) xs =map f (map g xs) }

Proofs On the right in Figure 1 we show the proofs of these laws using PLE, which should be
compared to the classical equational proof e.g. by Wadler [1987], shown on the left. With PLE, the
user need only to provide the high-level structure — the case splits and invocations of the induction
hypotheses — after which PLE automatically completes the rest of the equational proof. Thus using
SMT-based PLE, app_assoc shrinks down to its essence: an induction over the list xs. The difference
is even more stark with map_fusion whose full equational proof is omitted, as it is twice as long.

PLE vs. Normalization The proofs in Figure 1 may remind readers familiar with Type-Theory
based proof assistants (e.g. CoQ or AGpA) of the notions of type-level normalization and rewriting
that permit similar proofs in those systems. While our approach of PLE is inspired by the idea of
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Coq AGDA PLE

Theorem swap_idemp: swap_idemp : ¥ xs - swap (swap xs) = swap xs swap_idemp ::
v al, swap (swap al) = swap al.| | swap_idemp [] = P.refl xs:_ -> {swap (swap xs) = swap xs}
Proof. intros. swap_idemp (x1 :: [1) = P.refl
destruct al as [ | a al]. swap_idemp (x1 :: x2 :: xs) with x1 s? xa swap_idemp (x1:x2:xs)
simpl. reflexivity. swap_idemp (x1 :: x2 :: xs) | yes p with x2 =? x1 | x1>x2 =()
destruct al as [ | b al]. .+« | yes q rewrite antisym p q = P.refl | otherwise = ()
simpl. reflexivity. «es | NO =q = P.refl swap_idemp xs = ()
simpl. bdestruct (b <? a). | | swap_idemp (x: :: x2 :: xs) | no =p with x1 =? x2
* oo | Yes q = L-elim (-p q)
simpl. bdestruct (a <? b).|| ... | no =g = P.refl DA F NY
omega. reflexivity.
* lemma swap_idempotent2(xs: List<int>)
simpl. bdestruct (b <? a). ensures swap(swap(xs)) == swap(xs);
omega. reflexivity. Qed. {}

Fig. 2. Proofs that swap is idempotent with Coq, AcbA, DAFNY and PLE.

type level computation, it differs from it in two significant ways. First, from a theoretical point of
view, SMT logics are not equipped with any notion of computation, normalization, canonicity or
rewriting. Instead, our PLE algorithm shows how to emulate those ideas by asserting equalities
corresponding to function definitions (Theorem 6.10). Second, from a practical perspective, the
combination of (decidable) SMT-based theory reasoning and PLE’s proof search can greatly simplify
verification. For example, consider the swap function from Appel [2016]’s CoQ textbook:

swap :: [Integer] — [Integer]
swap (x1:x2:xs) = if x1 > x2 then x2:x1:x2 else x1:x2:xs
swap Xxs = Xs

In Figure 2 we show four proofs that swap is idempotent: Appel’s proof using Coq (simplified by
the use of a hint database and the arithmetic tactic omega), its variant in AGpa (for any Decidable
Partial Order), the PLE proof, and a proof using the DAFNY verifier. It is readily apparent that PLE’s
proof search, working hand-in-glove with SMT-based theory reasoning, makes proving the result
trivial in comparison to CoQ or AGpa. Of course, proof assistants like AGpa, CoQ, and ISABELLE
emit easily checkable certificates and have decades-worth of tactics, libraries, and proof scripts that
enable large scale proof engineering. On the other hand, DAFNY’s fuel-based axiom instantiation
automatically unfolds the definition of swap twice, thereby completing the proof without any user
input. These heuristics are orthogonal to PLE and can be combined with it, if the user wishes to
trade off predictability for even more automation.

Summary We saw an overview of an SMT-automated refinement type checker that achieves SMT-
decidable checking by restricting verification conditions to be quantifier-free and hence, decidable.
In existing SMT-based verifiers (e.g. DAFNY) there are two main reasons to introduce quantifiers,
namely (1) to express quantified specifications and (2) to encode the semantics of user-defined
functions. Next, we use propositions-as-types to encode quantified specifications and in § 4 we
show how to encode the semantics of user-defined functions via refinement reflection.

3 EMBEDDING NATURAL DEDUCTION WITH REFINEMENT TYPES

In this section we show how user-provided quantified specifications can be naturally encoded using
A-abstractions and dependent pairs to encode universal and existential quantification, respectively.
Proof terms can be generated using the standard natural deduction derivation rules, following
Propositions as Types [Wadler 2015] (also known as the Curry-Howard isomorphism [Howard
1980]). What is new is that we exploit this encoding to show for the first time that a refinement
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Logical Formula Refinement Type

Native Terms e {e}
Implication b1 = P2 ¢ — o
Negation - ¢ — { False}
Conjunction d1 A Py (¢1, P2)
Disjunction o1V o Either ¢; ¢
Forall Vx.¢ X:T—>¢
Exists dx.¢ (x=1,0)

Fig. 3. Mapping from logical predicates to quantifier-free refinement types. { e } abbreviates { v : Prop | e }.
Function binders are not relevant for negation and implication, and hence, elided.

type system can represent any proof in Gentzen’s natural deduction [Gentzen 1935] while still
taking advantage of SMT decision procedures to automate the quantifier-free portion of natural
deduction proofs. For simplicity, in this section we assume all terms are total.

3.1 Propositions: Refinement Types

Figure 3 maps logical predicates to types constructed over quantifier-free refinements.

Native terms Native terms consist of all of the (quantifier-free) expressions of the refinement
languages. In § 4 we formalize refinement typing in a core calculus A¥ where refinements include
(quantifier-free) terminating expressions.

Boolean connectives Implication ¢ = ¢, is encoded as a function from the proof of ¢; to the
proof of ¢,. Negation is encoded as an implication where the consequent is False. Conjunction
¢1 A ¢ is encoded as the pair (¢1, $2) that contains the proofs of both conjuncts and disjunction
@1V ¢ is encoded as the sum type Either that contains the proofs of one of the disjuncts, i.e. where
data Either a b = Left a | Right b.

Quantifiers Universal quantification Vx.¢ is encoded as lambda abstraction x : 7 — ¢ and
eliminated by function application. Existential quantification dx.¢ is encoded as a dependent pair
(x::7, ¢) that contains the term x and a proof of a formula that depends on x. Even though
refinement type systems do not traditionally come with explicit syntax for dependent pairs, one
can encode dependent pairs in refinements using abstract refinement types [Vazou et al. 2013]
which do not add extra complexity to the system. Consequently, we add the syntax for dependent
pairs in Figure 3 as syntactic sugar for abstract refinements.

3.2 Proofs: Natural Deduction

We overload ¢ to be both a proposition and a refinement type. We connect these two meanings of
¢ by using the Propositions as Types [Wadler 2015], to prove that if there exists an expression (or
proof term) with refinement type ¢, then the proposition ¢ is valid.

We construct proofs terms using Gentzen’s natural deduction system [Gentzen 1935], whose
rules map directly to refinement type derivations. The rules for natural deduction arise from the
propositions-as-types reading of the standard refinement type checking rule (to be defined in § 4)
I+ e: ¢ as “¢ is provable under the assumptions of I'”. We write I' yp ¢ for Gentzen’s natural
deduction judgement “under assumption I, proposition ¢ holds”. Then, each of Gentzen’s logical
rules can be recovered from the rules in Figure 5 by rewriting each judgement T + e : ¢ of AR as
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e:de, YTy, Xilx, ex Py Fex : Py
€, Y:iTy, Xity,x:Px FY: T
e:fe,y:Ty ke P ‘ SR S ! V-E
e:Pe,YiTy, Xitx,ex:Px Fex Y:pxy
e:de,y:1y F case e of {(x,ex) = (x,ex )} : Ix.(px 1)
e:d. F Ay.case e of {(x,ex) = (x,ex y)} : Yy.Ix.(p x y)

0O+ Ae y.case e of {(x,ex) = (x,ex y)} : (AxNVy.(p x y)) = (Vy.Ix.(p x y))

V-1
=

Fig. 4. Proof of (Ix.Vy.(p x y)) = (Vy.3x.(p x y)) where o = Ax.Vy.(p x y), px = Yy.(p x y).

I' FNp ¢. For example, conjunction and universal elimination can be derived as:

F'tnpp1 Ve, T,¢oibnp ¢ T.dabnp @ VE TrNp exterm T ryp Vx.¢ vE
TFND ¢ T'FND plx/ex]

Programs as Proofs As Figure 5 directly maps natural deduction rules to derivations that are
accepted by refinement typing, we conclude that if there exists a natural deduction derivation for a
proposition ¢, then there exists an expression that has the refinement type ¢.

THEOREM 3.1. IfT FNp ¢, then we can construct an e such thatT + e : ¢.

Note that our embedding is not an isomorphism, since the converse of Theorem 3.1 does not
hold. As a counterexample, the law of the excluded middle can be proved in our system (i.e. we
can construct an Either term e, so that p:{Bool | True } + e : p V —p), but cannot be proved
using natural deduction (i.e. { True } ¥np p V —p). The reason for that is that our system is using
the classical logic of the SMTs, that includes the law of the excluded middle. On the contrary, in
intuitionistic systems that also encode natural deduction (e.g. CoQ, IDr1s, NUPRL) the law of the
excluded middles should be axiomatized.

3.3 Examples

Next, we illustrate our encoding with examples of proofs for quantified propositions ranging from
textbook logical tautologies, properties of datatypes like lists, and induction on natural numbers.

Natural Deduction as Type Derivation We illustrate the mapping from natural deduction rules to
typing rules in Figure 4 which uses typing judgments to express Gentzen'’s proof of the proposition

¢=3AxNy.(pxy) = Vy.Ix.(pxy))

Read bottom-up, the derivation provides a proof of ¢. Read top-down, it constructs a proof of the
formula as the term Ae y.case e of {(x,ex) — (x, ex y)}. This proof term corresponds directly to
the following Haskell expression that typechecks with type ¢.

exAll :: p:(a - a — Bool) — (x::a, y:a > {p x y}) — y:a = (x::a, {p x y})
exAll _ = \e y — case e of {(x, ex) — (x, ex y)}

SMT-aided proofs The great benefit of using refinement types to encode natural deduction is
that the quantifier-free portions of the proof can be automated via SMTs. For every quantifier-free
proposition ¢, you can convert between {¢}, where ¢ is treated as an SMT-proposition and ¢, where
¢ is treated as a type; and this conversion goes both ways. For example, let ¢ = p A (¢l|r). Then
flatten converts from ¢ to {¢} and expand the other way, while this conversion is SMT-aided.
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flatten :: p:_ > q:_ — r:_— ({p}, Either {q} {r}) — {p & (q || r)?}
flatten (pf, Left qgf) = pf &&& gf
flatten (pf, Right rf) pf &8&& rf

expand :: p:_ = q:_ o> r:_ > {p& (g || r)} —» (p}, Either {q} {r})
expand proof | g = (proof, Left proof)
expand proof | r = (proof, Right proof)

Distributing Quantifiers Next, we construct the proof terms needed to prove two logical prop-
erties: that existentials distribute over disjunctions and foralls over conjunctions, i.e.

$3 = (AxpxVqgx) = (TAxpx)V (Ix.qx)) (1)
dv = (Vxpx Agx)= ((Vx.p x) A (Vx.q x)) (2)

The specification of these properties requires nesting quantifiers inside connectives and vice versa.
The proof of ¢35 (1) proceeds by existential case splitting and introduction:

exDistOr :: p:_ — q:_ — (x::a, Either {p x} {9 x3})

— Either (x::a, {p x}) (x::a, {q x})
exDistOr _ (x, Left px) = Left (x, px)
exDistOr _ _ (x, Right gx) = Right (x, qgx)

Dually, we prove ¢v (2) via a A-abstraction and case spitting inside the conjunction pair:

allDistAnd :: p:_ — q:_ — (x:a—>{p x}, {a x}))
- ((x:a—={p x}), (x:a—={q x}))
allDistAnd _ _ andx = ( (A\x — case andx x of (px, _) — px)
, (A\x — case andx x of (_, gx) — qgx) )

The above proof term exactly corresponds to its natural deduction proof derivation but using
SMT-aided verification can get simplified to the following

allDistAnd _ _ andx = (pf, pf)
where pf x = case andx x of (px, py) — px &&& py

Properties of User Defined Datatypes As ¢ can describe properties of data types like lists, we
can prove properties of such types, e.g. that for every list xs, if there exists a list ys such that
xs == ys ++ ys then xs has even length.

¢ = VYxs.((Jys. xs = ys ++ ys) = (In.len xs = n + n))

The proof (evenLen) proceeds by existential elimination and introduction and uses the lenAppend
lemma, which in turn uses induction on the input list and PLE to automate equational reasoning.

evenLen :: xs:[al—-(ys::[al,{xs = ys ++ ys})—(n::Int,{len xs = n+n})

evenLen xs (ys,pf) = (len ys, lenAppend ys ys &&& pf)

lenAppend :: xs:_ — ys:_ — {len (xs ++ ys) = len xs + len ys}

lenAppend [] - =0
lenAppend (x:xs) ys = lenAppend xs ys

Induction on Natural Numbers Finally, we specify and verify induction on natural numbers:

dina=(pPOA(Nnp(n—1)=pn)=VYnpn)
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F'ke:
kaste:qﬁl € (¢1’¢2) A-L-E
Trsnde: ¢, I'+fste: ¢,
T ( ) FFCZ(¢1,¢2) ARE
Fe: y -R-
¢ ¢1 ¢2 Fl—snde:qu
Ther:
° R ¢1 V-L-I T're:Either q51 ¢2
I+ Lefte; : Either ¢ ¢2 Toxiipiber:d  Doxoiobes:op
V-E
T'he :¢o T+ caseeof {Left x; — ey
V-R-1 1 .
T+ Right e, : Either ¢; ¢y Right x; — e2}: ¢
Dx:pete: ¢ Tre:¢py > ¢ Trey:oy
=-I =-E
IF'FAx.e: e = ¢ IF'reeyx:¢
I''x:tte: T'hey:1 TF're:(x:7—>
b x :irog)

IF'FAxe:(x:7 > ¢)
F'rfste:r T,x:trsnde:¢

T'Feex:P[x/ex]
F're:(xur,¢9x) Toxit,yipere : ¢

31
IFre:(x:r,d[x/fste])

aE
I'+caseeof {(x,y) > €'} : ¢

Fig. 5. Natural deduction rules for refinement types. With [fst|snd] e = case e of {(x1,x2) — [x1]x2]} .

The proof proceeds by induction (e.g. case splitting). In the base case, n == 0, the proof calls the left
conjunct, which contains a proof of the base case. Otherwise, @ < n, the proof applies the induction
hypothesis to the right conjunct instantiated at n-1.

ind :: p:_ - ({p 0},(n:Nat — {p (n-1)} - {p n})) — n:Nat — {p n}
ind p (p2, pn) @ = po
ind p (p2, pn) n = pn n (ind p (p@, pn) (n-1))

3.4 Consequences

To summarize, we use the propositions-as-types principle to make two important contributions.
First, we show that natural deduction reasoning can smoothly co-exist with SMT-based verification
to automate the decidable, quantifier-free portions of the proof.

Second, we show for first time how natural deduction proofs can be encoded in refinement type
systems like L1ouip HASKELL and we expect this encoding to extend, in a straightforward manner
to other SMT-based deductive verifiers (e.g. DAFNY and F¥). This encoding shows that refinement
type systems are expressive enough to encode any intuitionistic natural deduction proof, gives a
guideline for encoding proofs with nested quantifiers, and provides a pleasant implementation of
natural deduction that is pedagogically useful.

4 REFINEMENT REFLECTION: AR

Refinement reflection encodes recursive functions in the quantifier-free, SMT logic and it is for-
malized in three steps. First, we develop a core calculus AR with an undecidable type system based
on denotational semantics and prove it sound. Next, in § 5 we define a language A% that soundly
approximates AR while enabling decidable, SMT-based type checking. Finally, in § 6 we develop a
complete proof search algorithm to automate equational reasoning.
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Ops © == =|< Terms p == peap | &p | D
Consts c == A | ! | O] +,—,... | n|b|x]|xp
| True | False | 0,—1,1,... | if pthenpelsep
Vals w == ¢ | Ax.e | Dw Ints n == 0,—-1,1,...
Exprs e == w | x | ee Bools b := True | False
| casex=eof {Dx — e} Bin-Ops v« == =|<| A | +,—,...
Binds b = e | letrecx:t=binb Un-Ops &, == ! | ...
Progs p == b | reflectx:t=einp Args s, == Int | Bool | U
Bas. Types B == Int | Bool | T | Funsg sq
Ref. Types v == {v:Bl e} | x:1, > 1 Sorts s u=sq | sq s

Fig. 6. (Left) Syntax of AR: Denotational Typing.  (Right) Syntax of A5: Algorithmic Typing.

4.1 Syntax

Figure 6 summarizes the syntax of AR, which is essentially the calculus AV [Vazou et al. 2014]
with explicit recursion and a special reflect binding to denote terms that are reflected into the
refinement logic. The elements of AR are constants, values, expressions, binders, and programs.

Constants The constants of AX include primitive relations ©, here, the set {=, <}. Moreover, they
include the booleans True, False, integers —1, 0, 1, etc., and logical operators A, !, etc..

Data Constructors Data constructors are special constants. For example, the data type [Int],
which represents finite lists of integers, has two data constructors: [] (nil) and : (cons).

Values & Expressions The values of AX include constants, A-abstractions Ax.e, and fully applied
data constructors D that wrap values. The expressions of AR include values, variables x, applications
e e, and case expressions.

Binders & Programs A binder b is a series of possibly recursive let definitions, followed by an
expression. A program p is a series of reflect definitions, each of which names a function that is
reflected into the refinement logic, followed by a binder. The stratification of programs via binders
is required so that arbitrary recursive definitions are allowed in the program but cannot be inserted
into the logic via refinements or reflection. (We can allow non-recursive let binders in expressions
e, but omit them for simplicity.)

4.2 Operational Semantics

We define < to be the small step, call-by-name S-reduction semantics for AX. We evaluate reflected

terms as recursive let bindings, with termination constraints imposed by the type system:
reflectx:r=einp<— letrecx:r=einp

We define <—=* to be the reflexive, transitive closure of < . Moreover, we define ~ g tobe the

reflexive, symmetric, and transitive closure of — .

Constants Application of a constant requires the argument be reduced to a value; in a single step,
the expression is reduced to the output of the primitive constant operation, i.e. c v < J§(c, v). For
example, consider =, the primitive equality operator on integers. We have §(=,n) = =, where
&(=pn,m) equals True iff m is the same as n.

Equality We assume that the equality operator is defined for all values, and, for functions, is
defined as extensional equality. That is, for all f and f”, (f = f’) < Trueiff Yo. f v =g ' v. We
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assume source terms only contain implementable equalities over non-function types; while function
extensional equality only appears in refinements.

4.3 Types

AR types include basic types, which are refined with predicates, and dependent function types. Basic
types B comprise integers, booleans, and a family of data-types T (representing lists, trees etc.).
For example, the data type [Int] represents lists of integers. We refine basic types with predicates
(boolean-valued expressions e) to obtain basic refinement types {v : B | e}. We use |} to mark provably
terminating computations and use refinements to ensure that if e:{v : BY | ¢’}, then e terminates.
As discussed by Vazou et al. [2014] termination labels are checked using refinement types and
are used to ensure that refinements cannot diverge as required for soundness of type checking
under lazy evaluation. Termination checking is crucial for this work, as combined with checks for
exhaustive definitions (§ 2.1), it ensures totality (well-formedness) of expressions as required by
propositions-as-types (§ 3) and termination of PLE (§ 6). Finally, we have dependent function types
x:7x — T where the input x has the type 7, and the output 7 may refer to the input binder x. We
write B to abbreviate {v : B | True} and 7, — 7 to abbreviate x:7, — 7, if x does not appear in .

Denotations Each type 7 denotes a set of expressions [[7]], that is defined via the operational
semantics [Knowles and Flanagan 2010]. Let shape(r) be the type we get if we erase all refinements
from 7 and e : shape(r) be the standard typing relation for the typed lambda calculus. Then, we
define the denotation of types as:

[[{X:B|r}]]
Mix:BY 1] = Mix:Blrj]n{e|l Iw.e > w)

[x:zx = 7] = {e|e:shape(ry = 7),Vex € [7x]l. (e ex) € [r[x/ex]]}

{e|e: B, ife =™ wthen r[x/w] =™ True}

Constants For each constant ¢ we define its type prim(c) such that ¢ € [[prim(c)]]. For example,
prim(3) = {v:Int!|ov =23}
prim(+) x:Intd - y:Int! - {v: Int! | v=x+y}
prim(<) x:Intd - y:Int! - {v: Bool! |v & x < y}

4.4 Refinement Reflection

Reflection strengthens function output types with a refinement that reflects the definition of the
function in the logic. We do this by treating each reflect-binder (reflect f: 7 =einp)asa
let rec-binder (let rec f : Reflect(r, e) = e in p) during type checking (rule T-ReFL in Figure 7).

Reflection We write Reflect(z, e) for the reflection of the term e into the type 7, defined as

Reflect({v : BY | r}, e) = {(v:Bl|rAav=ce)
Reflect(x:7y — 7,Ax.) = x:7, — Reflect(z,e)

As an example, recall from § 2 that the reflect fib strengthens the type of fib with the refinement
fibP. That is, let the user specified type of fib be tfi, and the its definition be definition An.efjp.

teip = {v:Int! [0<o} > {v:Intd [0 <o)
erip = casex =n < 1of {True — n;False — fib(n —1) + fib(n — 2)}
Then, the reflected type of fib will be:

Reflect(tfip, efip) = n:{v: IntY10<o) > {(v:Intd |0 <vAD=efip)
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Termination Checking We defined Reflect(:, -) to be a partial function that only reflects provably
terminating expressions, i.e. expressions whose result type is marked with |J. If a non-provably
terminating function is reflected in an AR expression then type checking will fail (with a reflection
type error in the implementation). This restriction is crucial for soundness, as diverging expressions
can lead to inconsistencies. For example, reflecting the diverging f x = 1 + f x into the logic leads
to an inconsistent system that is able to prove 0 = 1.

Automatic Reflection Reflection of AR expressions into the refinements happens automatically
by the type system, not manually by the user. The user simply annotates a function f as reflect f.
Then, the rule T-ReFL in Figure 7 is used to type check the reflected function by strengthening f’s
result via Reflect(-, -). Finally, the rule T-LET is used to check that the automatically strengthened
type of f satisfies f’s implementation.

4.5 Typing Rules
Next, we present the type-checking rules of AR, as found in Figure 7.

Environments and Closing Substitutions A type environment I is a sequence of type bindings
X1:T1,...,%Xn : Tn. An environment denotes a set of closing substitutions 0 which are sequences of
expression bindings: x; — ey, ..., x, > e, such that:

[T = {6 |VYx:Ttel.0(x)e [0 7]}

where 6 - 7 applies a substitution to a type (and likewise 0 - p, to a program).

A reflection environment R is a sequence that binds the names of the reflected functions with
their definitions f; — ey,..., fu = e,. A reflection environment respects a type environment
when all reflected functions satisfy their types:

F'ER =VY(fe)eR Ar. (f:r) eTA([;Rre:1)

Typing A judgmentT';R I p : 7 states that the program p has the type 7 in the type environment
I" and the reflection environment R. That is, when the free variables in p are bound to expressions
described by T, the program p will evaluate to a value described by 7.

Rules All but two of the rules are standard [Knowles and Flanagan 2010; Vazou et al. 2014] except
for the addition of the reflection environment R at each rule. First, rule T-REFL is used to extend
the reflection environment with the binding of the function name with its definition (f — e)
and moreover to strengthen the type of each reflected binder with its definition, as described
previously in § 4.4. Second, rule T-EXAcT strengthens the expression with a singleton type equating
the value and the expression (i.e. reflecting the expression in the type). This is a generalization
of the “selfification” rules from [Knowles and Flanagan 2010; Ou et al. 2004] and is required to
equate the reflected functions with their definitions. For example, the application fib 1 is typed as
{v:Intd | fibP 1 A v = fib 1} where the first conjunct comes from the (reflection-strengthened)
output refinement of fib (§ 2) and the second comes from rule T-ExacrT.

Well-formedness A judgment I' + 7 states that the refinement type 7 is well-formed in the
environment I'. Following Vazou et al. [2014], 7 is well-formed if all the refinements in 7 are
Bool-typed, provably terminating expressions in I'.

Subtyping A judgment I';R F 71 < 7, states that the type 7; is a subtype of 7; in the environments
I' and R. Informally, 7y is a subtype of 7, if, when the free variables of r; and 7, are bound to
expressions described by T, the denotation of 77 is contained in the denotation of 7,. Subtyping of
basic types reduces to denotational containment checking, shown in rule <-Basg-AR. That is, 7; is
a subtype of 7, under T' if for any closing substitution 6 in [[T']], [0 - 7;] is contained in [[6 - 7,]].

Soundness We prove that typing implies denotational inclusion and evaluation preserves typing.
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x:7€Tl ;Rrp:7’ TRy =71
————  T-Var T-Con T-Sus
IGbRex:t IR+ c: prim(c) I'REp:T
T;Rre:{v:B]|e} Ix:t;Rbe:t
T-Exact T-Fun
I''Rre:{v:Ble Av=c¢} [;REAx.e: (x:74 > 1)

T,x:t;REeby i1 Tox:Ty b1y

I;Rre:(x:ity > 1) T;RFex:Ty I,x:tR+b: 7T 'rr
T-Arp - T-LET
T;REeey:1[x/ex] I';Rrletrecx:t,=byinb: 7
IbRre:{v:T|e} Trr
Viprim(D;) =y; ;> {v:Tle,} T,yi:t,x:{v:T|e-Ae,};RFe T
T-Cas
I'N"Rrcasex=eof (D;y; — e} :7T i
ISR, f = e+ let rec f: Reflect(zp,e) =einp:r
T-ReFL
IiREreflect firp=einp: 7
Well Formedness F'rr
T,v:B;0+ e:Bool! T'rtr, D,x:tebr
WEF-BASE WF-Fun

Tr{v:B]|e} F'rx:ity > 7

VO € [T].O-{v:Ble}] C[[0-{v:B|e}]
T5Re{v:Ble} <{v:B|e)}

<-Base-AR

IRy, <7y Ix:t;Rro=<17’

P P <-Fun
DIREX:Ty > T2 Xx:T, > 7T

Fig. 7. Typing of AR.

THEOREM 4.1. [Soundness of AR ]
e DenotationsIf T;R+ p: 7, thenV¥0 € [T].0-p € [[0-7].
o PreservationIf 0;0+ p: 1 andp —* w, then0;0+ w : 7.

The proofs can be found in [Vazou et al. 2017]. Theorem 4.1 lets us prove that if ¢ is a AR type inter-
preted as a proposition (using the mapping of Figure 3) and if there exists a p so that 0; 0 - p : ¢, the ¢
is valid. For example, in § 2 we verified that the term fibUp proves n:Nat — {fibn < fib (n + 1)}.
Via soundness of AR, we get that for each valid input n, the result refinement is valid.

¥Yn.0 < n<* True = fibn < fib (n+ 1) =™ True
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5 ALGORITHMIC CHECKING: A°

A5 is a first order approximation of AR where higher-order features are approximated with un-
interpreted functions and the undecidable type subsumption rule <-Basg-A¥ is replaced with a
decidable one (i.e., <-BAse-PLE), yielding an sound and decidable SMT-based algorithmic type
system. Figure 6 summarizes the syntax of A%, the sorted (SMT-) decidable logic of quantifier-free
equality, uninterpreted functions and linear arithmetic (QF-EUFLIA) [Barrett et al. 2010; Nelson
1980]. The terms of A5 include integers n, booleans b, variables x, data constructors D (encoded as
constants), fully applied unary @; and binary »< operators, and application x p of an uninterpreted
function x. The sorts of A% include the built-in Int and Bool to represent integers and booleans and
the uninterpreted U to represent data types. The interpreted functions of A%, e.g. the logical constants
= and <, have the function sort s — s. Other functional values in A%, e. g. reflected AR functions
and A-expressions, are represented as first-order values with the uninterpreted sort Fun s s.

5.1 Transforming A into A°

The judgment T + e ~ p states that a AR term e is transformed, under an environment I, into a A°
term p. If T + e ~> p and T is clear from the context we write |e] and [p] to denote the translation
from AR to A% and back. Most of the transformation rules are identity and can be found in [Vazou
et al. 2017]. Here we discuss the non-identity ones.

Embedding Types We embed A types into A° sorts as:
lInt] =Int [T] =U L{v:BW |e}] = |B]
|[Bool]| = Bool lx:te = 7]  =Fun |7y] 7]
Embedding Constants Elements shared on both A¥ and 15 translate to themselves. These elements

include booleans, integers, variables, binary and unary operators. SMT solvers do not support

currying, and so in A%, all function symbols must be fully applied. Thus, we assume that all

applications to primitive constants and data constructors are fully applied, e.g. by converting source

terms like (+ 1) to (\z — z + 1).

Embedding Functions As A’ is first-order, we embed As using the uninterpreted function 1am.
Ix:tebe~p T;0F (Axee): (x:1x > 1)

T+ Ax.e ~ 1amE’jJ xp

The term Ax.e of type 7, — 7 is transformed to lam* x p of sort Fun s, s, where s, and s are

respectively | 7,.| and | 7], 1amy* is a special uninterpreted function of sort s, — s — Fun s, s, and

x of sort s, and p of sort s are the embeddings of the binder and body, respectively. As 1am is an

SMT-function, it does not create a binding for x. Instead, x is renamed to a fresh SMT name.

Embedding Applications We use defunctionalization [Reynolds 1972] to embed applications.
F'rex~px Trewwp Ti0re:zy—>7

Fheex~ app{:’]J D px

The term e e,, where e and e, have types 7, — 7 and 7y, is transformed to apps* p py : s where s
and s, are 7] and |7, ], the app}* is a special uninterpreted function of sort Fun sy s — sy — s,
and p and p, are the respective translations of e and e,.

Embedding Data Types We embed data constructors to a predefined A% constant sp of sort
Lprim(D)]: T + D ~~ sp. For each datatype, we create reflected functions that check the top-level
constructor and select their individual fields. For example, for lists, we create the functions
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isNil [] = True isCons (x:xs) = True sell (x:xs) X

isNil (x:xs) = False isCons [] = False sel2 (x:xs) = xs

The above selectors can be modeled precisely in the refinement logic via SMT support for ADTs [Nel-
son 1980]. To generalize, let D; be a data constructor such that prim(D;) = 7,1 = -+ = 7, = 7.
Then check isp, has the sort Fun [ 7] Bool and select selp, ; has the sort Fun | 7] |7 ;].

Embedding Case Expressions We translate case-expressions of AX into nested if terms in A%, by
using the check functions in the guards and the select functions for the binders of each case.

I're~p Trelyi/selp, x][x/e] ~ p;

I'-casex =eof {D;y; — e;} ~» if app isp, p thenp; else ... elsep,
The above translation yields the reflected definition for append (++) from (§ 2.5).

Semantic Preservation The translation preserves the semantics of the expressions. Informally, if
I' e ~~ p, then for every substitution 6 and every logical model ¢ that respects the environment I'
iff-e—>*vtheno |=p=|v].

5.2 Algorithmic Type Checking

We make the type checking from Figure 7 algorithmic by checking subtyping via our novel, SMT-
based Proof by Logical Evaluation(PLE). Next, we formalize how PLE makes checking algorithmic
and in § 6 we describe the PLE procedure in detail.

Verification Conditions Recall that in § 5.1 we defined |-] as the translation from AX to A°.
Informally, the implication or verification condition (VC) |I'] = p; = p, is valid only if the set of
values described by p; is subsumed by the set of values described by p, under the assumptions of T'.
I' is embedded into logic by conjoining the refinements of terminating binders [Vazou et al. 2014]:

{I_ej ifT(x) = {x:B' | e}

IT] = U I, x] where we embed each binderas |I',x]| = )
True otherwise.

xel

Validity Checking Instead of directly using the VCs to check validity of programs, we use
the procedure PLE that strengthens the assumption environment |I'] with equational properties.
Concretely, given a reflection environment R, type environment I', and expression e, the procedure
PLE(LR], LT'], Le]) — we will define [R] in § 6.1 — returns true only when the expression e evaluates
to True under the reflection and type environments R and I'.

Subtyping via VC Validity Checking We make subtyping, and hence, typing decidable, by
replacing the denotational base subtyping rule <-Base-AR with the conservative, algorithmic
version <-BAse-PLE that uses PLE to check the validity of the subtyping.

PLE(LR], [T, v : {v:B" | e1}], lez])
I;Rbpre {U:B|€1} < {’UtBlEg}

This typing rule is sound as functions reflected in R always respect the typing environment I’
(by construction) and because PLE is sound (Theorem 6.2).

<-Base-PLE

LEMMA 5.1. IfT;RFprp{v:Ble} <{v:B|ey} thenT;RF{v:B|e} <{v:B]ep}.

Soundness of 1° We write T'; R Fpig e : 7 for the judgments that can be derived by the algorithmic
subtyping rule <-Basg-PLE (instead of <-Basg-AR.) Lemma 5.1 implies the soundness of 1.

THEOREM 5.2 (SOUNDNESS OF A%). IfT;R bpige: 7, thenT;RFe: 1.
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Terms p,t,b := AS if-free terms from Figure 6
Functions F == /W.(p?b)
Definitional Environment Y == 0| f=FY
Logical Environment d == 0] p@

Fig. 8. Syntax of Predicates, Terms and Reflected Functions.

Unfold : (P,0) > @
Unfold(¥, ®) = ®U Upg <o Instantiate (‘I‘, o, f, f)
Instantiate (¥, @, f,7) = {(Lf@] =b)[t/%] | (o = bi) € d, Smtvalid(@, p; [¢/%]) }
where
PEXC) = ¥(f)
PLE : (¥,®,p) — Bool
PLE(Y, ®,p) = loop (0, o U Uf(;)<p Instantiate (‘1’, D, f,f))
where
loop (i, ®;)
| SmtValid(®;,p) = true
| (I)i+1 - q)i = false
| otherwise = loop (i +1,®;11)
where
(Di+1 = QU Unfold(‘P, q)l)

Fig. 9. Algorithm PLE: Proof by Logical Evaluation.

6 COMPLETE VERIFICATION: PROOF BY LOGICAL EVALUATION

Next, we formalize our Proof By Logical Evaluation algorithm PLE and show that it is sound (§ 6.1),
that it is complete with respect to equational proofs (§ 6.2), and that it terminates (§ 6.3).

6.1 Algorithm

Figure 8 describes the input environments for PLE. The logical environment ® contains a set of
hypotheses p, described in Figure 6. The definitional environment ¥ maps function symbols f to
their definitions Ax.(p = b), written as A-abstractions over guarded bodies. Moreover, the body b
and the guard p contain neither A nor if. These restrictions do not impact expressiveness: As can
be named and reflected, and if-expressions can be pulled out into top-level guards using DeIf(:),
defined in [Vazou et al. 2017]. A definitional environment ¥ can be constructed from R as

[R] = {f — Ax.DeIf(Le])|(f > Ax.e) € R}
Notation We write f (t;,...,t,) < ®ifthe A% term (app. .. (app f t1) ... t,) is a syntactic subterm

of some t € ®. We abuse notation to write f(t) < t’ for f(t) < {t'}. We write SmtValid(®, p) for
SMT validity of the implication ® = p.

Instantiation & Unfolding A term q is a (¥, ®)-instance if there exists f(t) < ® such that:
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o ¥(f) = AxApi = bi),

e SmtValid(®, p; [?/f]), and

«q=(f(x) = b)) [t/%]-
A set of terms Q is a (¥, ®)-instance if every g € Q is an (¥, ®)-instance. The unfolding of ¥, ® is the
(finite) set of all (¥, ®)-instances. Procedure Unfold(¥, ®) shown in Figure 9 computes and returns
the conjunction of ® and the unfolding of ¥, ®. The following properties relate (¥, ®)-instances
to the semantics of AR and SMT validity. Let R[e] denote the evaluation of e under the reflection
environment R, i.e. O[e] = e and (R, f:er)[e] = R[let rec f = e ine].

LEMMA 6.1. For everyT |= R and 0 € (T,
e Sat-Inst If |e] is a (LR], |T'])-instance, then 0 - R[e] <™ True.
o SMT-Approx If SmtValid(|T], Le]), then 0 - R[e] <™ True.
o SMT-Inst If q is a (LR], |T'])-instance and SmtValid(|LT'] U {q}, Lel), then 6 - R[e] <™* True.

The Algorithm Figure 9 shows our proof search algorithm PLE(¥, @, p) which takes as input a
set of reflected definitions ¥, an hypothesis ®, and a goal p. The PLE procedure recursively unfolds
function application terms by invoking Unfold until either the goal can be proved using the unfolded
instances (in which case the search returns true) or no new instances are generated by the unfolding
(in which case the search returns false).

Soundness First, we prove the soundness of PLE.
THEOREM 6.2 (SOUNDNESS). IfPLE(|R], [T], Lel) then V@ € (T)), 0 - R[e] <™ True.

We prove Theorem 6.2 using the Lemma 6.1 that relates instantiation, SMT validity, and the exact
semantics. Intuitively, PLE is sound as it reasons about a finite set of instances by conservatively
treating all function applications as uninterpreted [Nelson 1980].

6.2 Completeness

Next, we show that our proof search is complete with respect to equational reasoning. We define
a notion of equational proof ¥,® + t — t’ and prove that if there exists such a proof, then
PLE(Y,®,t = t’) is guaranteed to return true. To prove this theorem, we introduce the notion of
bounded unfolding which corresponds to unfolding definitions n times. We show that unfolding
preserves congruences, and hence, that an equational proof exists iff the goal can be proved with
some bounded unfolding. Thus, completeness follows by showing that the proof search procedure
computes the limit (i.e. fixpoint) of the bounded unfolding. In § 6.3 we show that the fixpoint is
computable: there exists an unfolding depth at which PLE reaches a fixpoint and hence terminates.

Bounded Unfolding For every ¥, ®, and 0 < n, the bounded unfolding of depth n is defined by:
Unfold* (¥, @, 0) = @
Unfold* (¥, ®,n + 1) ®, U Unfold(¥, ®,) where ®, = Unfold"(¥,®,n)

That is, the unfolding at depth n essentially performs Unfold upto n times. The bounded-unfoldings

yield a monotonically non-decreasing sequence of formulas such that if two consecutive bounded
unfoldings coincide, then all subsequent unfoldings are the same.

LEmMMA 6.3 (MoNoTONICITY). Y0 < n. Unfold* (¥, ®, n) € Unfold*(¥,®,n + 1).
LEMMA 6.4 (FIXPOINT). Let ®; = Unfold™ (¥, ®,i). If®, = @11, then¥n < m. O, = O,

Uncovering Next, we prove that every function application term that is uncovered by unfolding to
depth n is congruent to a term in the n-depth unfolding.
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———— EQ-REFL
YO+t >t
Y.+t —t" & =Unfold(¥, ®U{v=1t"}) SmtValid(®’',v=1")
EQ-TrANS
YOt —t
Y, o+t —t] ¥, ®rt —»t, SmtValid(®,t] »at;)
Eg-Proor

\Il,q:)l-tllxltz

Fig. 10. Equational Proofs: rules for equational reasoning.

LEMMA 6.5 (UNCOVERING). Let ®,, = Unfold™(¥,® U {v = t}, n). If SmtValid(®,, v = t’), then
for every f(t') < t’ there exists f(f) < @, such that SmtValid(®,,t; = t)).

We prove the above lemma by induction on n where the inductive step uses the following
property of congruence closure, which itself is proved by induction on the structure of ¢':

LEMMA 6.6 (CONGRUENCE). If SmtValid(® U {v = t},v = t') and v ¢ O,t,t’, then for every
f(t') < t’ there exists f(f) < ®,t such that SmtValid(®, t; = t)).

Unfolding Preserves Equational Links We use the uncovering Lemma 6.5 and congruence to
show that every instantiation that is valid after n steps is subsumed by the n + 1 depth unfolding.
That is, we show that every possible link in any equational chain can be proved equal to the source
expression via bounded unfolding.

LEMMA 6.7 (LINK). IfSmtValid(Unfold™ (¥, ®U{v = t},n),v = t’), then SmtValid(Unfold* (¥, ®U
{v=t},n+1),Unfold(¥, U {v = t'})).

Equational Proof Figure 10 formalizes our rules for equational reasoning. Intuitively, there is
an equational proof that t; > t; under ¥, @, written by the judgment ¥, ®  t; > f,, if by some
sequence of repeated function unfoldings, we can prove that ¢; and t; are respectively equal to t;
and ¢, such that, SmtValid(®, t; >« ¢;) holds. Our notion of equational proofs adapts the idea of
type level computation used in TT-based proof assistants to the setting of SMT-based reasoning,
via the directional unfolding judgment ¥, ® + t — ¢’. In the SMT-realm, the explicit notion of a
normal or canonical form is converted to the implicit notion of the equivalence classes of the SMT
solver’s congruence closure procedure (post-unfolding).

Completeness of Bounded Unfolding We use the fact that unfolding preserves equational links
to show that bounded unfolding is complete for equational proofs. That is, we prove by induction
on the structure of the equational proof that whenever there is an equational proof of t = t’, there
exists some bounded unfolding that suffices to prove the equality.

LEMMA 6.8. If¥, D+t — ¢/, then 30 < n. SmtValid(Unfold*(¥,® U {v = t},n),v = t').

PLE is a Fixpoint of Bounded Unfolding We show that the proof search procedure PLE computes
the least-fixpoint of the bounded unfolding and hence, returns true iff there exists some unfolding
depth n at which the goal can be proved.

LEmMA 6.9 (FIxPoINT). PLE(Y,®, ¢ = ') iff An. SmtValid(Unfold™ (¥, ® U {v = t},n),v = t').
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The proof follows by observing that PLE(¥, ®, t = t’) computes the least-fixpoint of the sequence
®; = Unfold" (¥, ®, i). Specifically, we prove by induction on i that at each invocation of loop (i, ®;)
in Figure 9, @; is equal to Unfold* (¥, ® U {v = t}, i), which then yields the result.

Completeness of PLE Finally, we combine Lemmas 6.9 and 6.7 to show that PLE is complete, i.e. if
there is an equational proof that t > ¢’ under ¥, ®, then PLE(¥, ®, t > t’) returns true.

THEOREM 6.10 (COMPLETENESS). If¥,®  t >« t’ then PLE(Y, ®, t < t’) = true.

6.3 PLE Terminates

So far, we have shown that our proof search procedure PLE is both sound and complete. Both of
these are easy to achieve simply by enumerating all possible instances and repeatedly querying
the SMT solver. Such a monkeys-with-typewriters approach is rather impractical: it may never
terminate. Fortunately, we show that in addition to being sound and complete with respect to
equational proofs, if the hypotheses are transparent, then our proof search procedure always
terminates. Next, we describe transparency and explain intuitively why PLE terminates. We then
develop the formalism needed to prove the termination Theorem 6.16.

Transparency An environment I is inconsistent if SmtValid(|T'], false). An environment I is
inhabited if there exists some 0 € (T'|). We say I is transparent if it is either inhabited or inconsistent.
As an example of a non-transparent ®, consider the predicate 1enA xs = 1+ lenB xs, where lenA
and lenB are both identical definitions of the list length function. Clearly there is no 6 that causes
the above predicate to evaluate to true. At the same time, the SMT solver cannot (using the
decidable, quantifier-free theories) prove a contradiction as that requires induction over xs. Thus,
non-transparent environments are somewhat pathological and, in practice, we only invoke PLE
on transparent environments. Either the environment is inconsistent, e.g. when doing a proof-by-
contradiction, or e.g. when doing a proof-by-case-analysis we can easily find suitable concrete
values via random [Claessen and Hughes 2000] or SMT-guided generation [Seidel et al. 2015].

Challenge: Connect Concrete and Logical Semantics As suggested by its name, the PLE algo-
rithm aims to lift the notion of evaluation or computations into the level of the refinement logic.
Thus, to prove termination, we must connect the two different notions of evaluation, the concrete
(operational) semantics and the logical semantics being used by PLE. This connection is trickier
than appears at first glance. In the concrete realm totality ensures that every reflected function f
will terminate when run on any individual value v. However, in the logical realm, we are working
with infinite sets of values, compactly represented via logical constraints. In other words, the logical
realm can be viewed (informally) as an abstract interpretation of the concrete semantics. We must
carefully argue that despite the approximation introduced by the logical abstraction, the abstract
interpretation will also terminate.

Solution: Universal Abstract Interpretation We make this termination argument in three steps.
First, we formalize how PLE performs computation at the logical level via logical steps and logical
traces. We show (Lemma 6.13) that the logical steps form a so-called universal (or must) abstraction
of the concrete semantics [Clarke et al. 1992; Cousot and Cousot 1977]. Second, we show that
if PLE diverges, it is because it creates a strictly increasing infinite chain, Unfold* (¥, ®,0) C
Unfold* (¥, ®, 1) ... which corresponds to an infinite logical trace. Third, as the logical computation
is a universal abstraction we use inhabitation to connect the two realms, i.e. to show that an
infinite logical trace corresponds to an infinite concrete trace. The impossibility of the latter must
imply the impossibility of the former, i.e. PLE terminates. Next, we formalize the above to obtain
Theorem 6.16.
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Totality A function is total when its evaluation reduces to exactly one value. The totality of R can
and is checked by refinement types (§ 4). Hence, for brevity, in the sequel we implicitly assume that
Ris total under T.

Definition 6.11 (Total). Let b = Ax.{|p] = lel). b is total under I and R, if forall 0 € (T):
(1) if 6 - R[p;] <™ True, then Jo. 0 - R[e;] —* v,

(2) if 6 - R[p;] =—=* True and 0 - ¥[p;] —* True, then i = j, and

(3) there exists an i so that 0 - R[p;] <™* True.

Ris total under I, if every b € | R] is total under I and R.

Subterm Evaluation As the reflected functions are total, the Church-Rosser theorem implies that
evaluation order is not important. To prove termination, we require an evaluation strategy, e.g.
CBYV, in which if a reflected function’s guard is satisfied, then the evaluation of the corresponding
function body requires evaluating every subterm inside the body. As DeIf(-) hoists if-expressions
out of the body and into the top-level guards, the below fact follows from the properties of CBV:

LEMMA 6.12. Letb = Ax.{|p] = lel) and f € R. ForeveryT,R, and 0 € (T, if6 - R[p;] —™* True
and f(le’]) < Leil, then 6 - R[e;] —* C[£(0 - R[e’])].

Logical Step A pair f(t) ~ f’(t') is a ¥, ®-logical step (abbrev. step), if

. U(f) = A%.(p = b),

e SmtValid(® A Q, p;) for some (¥, ®)-instance Q, and

o f1(F) < b; [t/%].
Steps and Reductions Next, using Lemmas 6.12, 6.1, and the definition of logical steps, we show
that every logical step corresponds to a sequence of steps in the concrete semantics:

LEMMA 6.13 (STEP-REDUCTIONS). Iff(m) ~ f’(m) is a logical step under |R], |T'| and
0 € (T, then (0 - Rle]) —* C[f(0 - R[e’])] for some context C.

Logical Trace A sequence fy(t), fi(t), f2(t2), . . . is a ¥, ®-logical trace (abbrev. trace), if f;(t;) ~
fir1(tix1) is a ¥, ®-step, for each i. Our termination proof hinges upon the following key result:
inhabited environments only have finite logical traces. We prove this result by contradiction.
Specifically, we show by Lemma 6.13 that an infinite (| R], [I'])-trace combined with the fact that
I' is inhabited yields at least one infinite concrete trace, which contradicts the totality assumption.
Hence, all the (LR], |T']) logical traces must be finite.

THEOREM 6.14 (FINITE-TRACE). If T is inhabited, then every (LR], L T'])-trace is finite.

Ascending Chains and Traces If unfolding ¥, ® yields an infinite chain ®y ¢ ... € ®,...,
then ¥, ® has an infinite logical trace. We construct the trace by selecting at level i (i.e. in ®;) an
application term f;(%;) that was created by unfolding an application term at level i — 1 (i.e. in ®;_).

LEMMA 6.15 (ASCENDING CHAINS). Let ®; = Unfold* (¥, ®, i). If there exists an (infinite) ascend-
ing chain®, C ... C ®, ..., then there exists an (infinite) logical trace fy(ty), . .., fu(tn), . . ..

Logical Evaluation Terminates Finally, we prove that the proof search procedure PLE terminates.
If PLE loops forever, there must be an infinite strictly ascending chain of unfoldings ®;, and hence,
by Lemma 6.15, an infinite logical trace, which, by Theorem 6.14, is impossible.

THEOREM 6.16 (TERMINATION). IfT is transparent, then PLE(|R], '], p) terminates.
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Common Without PLE Search With PLE Search

Benchmark - -

Impl (1) [ Spec (1) | Proof (1) [ Time (s) [ SMT (q) | Proof (1) [ Time (s) [ SMT (q)
Arithmetic
Fibonacci 7 10 38 2.74 129 16 1.92 79
Ackermann 20 73 196 5.40 566 119 13.80 846
Class Laws Fig 11
Monoid 33 50 109 4.47 34 33 4.22 209
Functor 48 44 93 4.97 26 14 3.68 68
Applicative 62 110 241 12.00 69 74 10.00 1090
Monad 63 42 122 5.39 49 39 4.89 250
Higher-Order Properties
Logical Properties 0 20 33 2.71 32 33 2.74 32
Fold Universal 10 44 43 2.17 24 14 1.46 48
Functional Correctness
SAT-solver 92 34 0 50.00 50 0 50.00 50
Unification 51 60 85 4.77 195 21 5.64 422
Deterministic Parallelism
Conc. Sets 597 329 339 40.10 339 229 40.70 861
n-body 163 251 101 7.41 61 21 6.27 61
Par. Reducers 30 212 124 6.63 52 25 5.56 52
Total 1176 1279 1524 148.76 1626 638 150.88 4068

Table 1. We report verification Time (in seconds, on a 2.3GHz Intel® Xeon® CPU E5-2699 v3 with 18 physical
cores and 64GiB RAM.), the number of SMT queries and size of Proofs (in lines). The Common columns
show sizes of common Implementations and Specifications . We separately consider proofs Without and
With PLE Search.

7 EVALUATION

We have implemented reflection and PLE in L1Quip HASKELL [Vazou et al. 2014]. Table 1 summarizes
our evaluation which aims to determine (1) the kinds of programs and properties that can be verified,
(2) how PLE simplifies writing proofs, and (3) how PLE affects the verification time.

Benchmarks We summarize our benchmarks below, see [Vazou et al. 2017] for details.

o Arithmetic We proved arithmetic properties for the textbook Fibonacci function (c.f. § 2) and
the 12 properties of the Ackermann function from [Tourlakis 2008].

e Class Laws We proved the monoid laws for the Peano, Maybe and List data types and the Functor,
Applicative, and Monad laws, summarized in Figure 11, for the Maybe, List and Identity monads.

e Higher Order Properties We used natural deduction to prove textbook logical properties as
in § 3. We combined natural deduction principles with PLE-search to prove universality of
right-folds, as described in [Hutton 1999] and formalized in AGpa [Mu et al. 2009].

e Functional Correctness We proved correctness of a SAT solver and a unification algorithm as
implemented in Zombie [Casinghino et al. 2014]. We proved that the SAT solver takes as input a
formula f and either returns Nothing or an assignment that satisfies f, by reflecting the notion
of satisfaction. Then, we proved that if the unification unify s t of two terms s and t returns a
substitution su, then applying su to s and t yields identical terms. Note that, while the unification
function can itself diverge, and hence cannot be reflected, our method allows terminating and
diverging functions to soundly coexist.
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e Deterministic Parallelism Retrofitting verification onto an existing language with a mature
parallel run-time allows us to create three deterministic parallelism libraries that, for the first time,
verify implicit assumptions about associativity and ordering that are critical for determinism
(c.f- [Vazou et al. 2017] for extended description). First, we proved that the ordering laws hold
for keys inserted into LVar-style concurrent sets [Kuper et al. 2014]. Second, we used monad-par
[Marlow et al. 2011] to implement an n-body simulation, whose correctness relied upon proving
that a triple of Real (implementing) 3-d acceleration was a Monoid. Third, we built a DPJ-style
[Bocchino et al. 2009] parallel-reducers library whose correctness relied upon verifying that the
reduced arguments form a CommutativeMonoid, and which was the basis of a parallel array sum.

Proof Effort We split the total lines of code of our benchmarks into three categories: Spec
represents the refinement types that encode theorems, lemmas, and function specifications; Impl
represents the rest of the Haskell code that defines executable functions; Proofs represent the sizes
of the Haskell proof terms (i.e. functions returning Prop). Reflection and PLE are optionally enabled
using pragmas; the latter is enabled either for a whole file/module or per top-level function.

Runtime Overhead Proof terms have no runtime overhead as they will never be evaluated. When
verification of an executable term depends on theorems, we use the below withTheorem function

withTheorem :: x:a — Prop —» { v:ia | v =x }
withTheorem x _ = x

that inserts the proof argument into the static verification environment, relying upon laziness to
not actually evaluate the proof. For example, when verification depends on the associativity of
append on the lists xs, ys, and zs, the invocation withTheorem xs (app_assoc xs ys zs) extends
the (static) SMT verification environment with the instantiation of the associativity theorem of
Figure 1. This invocation adds no runtime overhead, since even though app_assoc xs ys zsisan
expensive recursive function, it will never actually get evaluated. To ensure that proof terms are
not evaluated in runtime, without using laziness, one can add one rewrite rule for each proof term
that replaces the term with unit. For example, the rewrite rule for app_assoc is

RULES "assoc/runtime" forall xs ys zs. app_assoc xs ys zs = ()

Such rules are sound, since each proof term is total, thus provably reduces to unit.

Results The highlights of our evaluation are the following. (1) Reflection allows for the specification
and verification of a wide variety of important properties of programs. (2) PLE drastically reduces
the proof effort: by a factor of 2— 5% — shrinking the total lines of proof from 1524 to 638— making it
quite modest, about the size of the specifications of the theorems. Since PLE searches for equational
properties, there are some proofs, that rarely occur in practice, that PLE cannot simplify, e.g. the
logical properties from § 3. (3) PLE does not impose a performance penalty: even though proof
search can make an order of magnitude many more SMT queries — increasing the total SMT queries
from 1626 without PLE to 4068 with PLE— most of these queries are simple and it is typically faster
to type-check the compact proofs enabled by PLE than it is to type-check the 2 — 5X longer explicit
proofs written by a human.

8 RELATED WORK

SMT-Based Verification SMT-solvers have been extensively used to automate program veri-
fication via Floyd-Hoare logics [Nelson 1980]. LEoN introduces an SMT-based algorithm that is
complete for catamorphisms (folds) over ADTs [Suter et al. 2010] and a semi-decision procedure that
is guaranteed to find satisfying assignments (models) for queries over arbitrary recursive functions,
if they exist [Suter et al. 2011]. Our work is inspired by DAFNY’s Verified Calculations [Leino and
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Monoid (for Peano, Maybe, List) Functor (for Maybe, List, Id)
Left Id. mempty x ¢ =x Id. fmap id xs = id xs
RightId. x ¢ mempty = x Distr. fmap (go h) xs = (fmapg o fmap h) xs
Assoc. (x0y)oz=x0(yo2)
Applicative (for Maybe, List, Id) Monad (for Maybe, List, Id)
Id. pureid ® v=v LeftId. return a>=f=fa
Comp. pure (@) ®u®@®v®w=u® (v®w) Rightld. m>=return =m
Hom. pure f @& pure x =pure (f x) Assoc. (m>»= f)»>=g=m>= (Ax - fx>=g)
Inter. u ® pure y=pure ($y) ® u
Ord (for Int, Double, Either, (,)) Commutative Monoid (for Int, Double, (,))
Refl. x <x Comm. x0y=yox
Antisym. x SyAy<x = x=y
Trans. x <yAy<z = x<z (including Monoid laws)

Total. x <yvy<x

Fig. 11. Summary of Verified Typeclass Laws.

Polikarpova 2016] but differs in (1) our use of reflection instead of axiomatization, (2) our use of
refinements to compose proofs, and (3) our use of PLE to automate reasoning about user-defined
functions. DAFNY (and F* [Swamy et al. 2016]) encode user-functions as axioms and use a fixed fuel
to instantiate functions upto some fixed unfolding depth [Amin et al. 2014]. While the fuel-based
approach is incomplete, even for equational or calculational reasoning, it may, although rare in
practice, quickly time out after a fixed, small number of instantiations rather than perform an
exhaustive proof search like PLE. Nevertheless, PLE demonstrates that it is possible to develop
complete and practical algorithms for reasoning about user-defined functions.

Proving Equational Properties Several authors have proposed tools for proving (equational)
properties of (functional) programs. Systems of Sousa and Dillig [2016] and Asada et al. [2015] extend
classical safety verification algorithms, respectively based on Floyd-Hoare logic and refinement
types, to the setting of relational or k-safety properties that are assertions over k-traces of a
program. Thus, these methods can automatically prove that certain functions are associative,
commutative etc. but are restricted to first-order properties and are not programmer-extensible.
Zeno [Sonnex et al. 2012] generates proofs by term rewriting and Halo [Vytiniotis et al. 2013] uses
an axiomatic encoding to verify contracts. Both the above are automatic, but unpredictable and not
programmer-extensible, hence, have been limited to far simpler properties than the ones checked
here. HERMIT [Farmer et al. 2015] proves equalities by rewriting the GHC core language, guided
by user specified scripts. Our proofs are Haskell programs, SMT solvers automate reasoning, and,
importantly, we connect the validity of proofs with the semantics of the programs.

Dependent Types in Programming Integration of dependent types into Haskell has been a
long standing goal [Eisenberg and Stolarek 2014] that dates back to Cayenne [Augustsson 1998],
a Haskell-like, fully dependent type language with undecidable type checking. Our approach
differs significantly in that reflection and PLE use SMT-solvers to drastically simplify proofs over
decidable theories. Zombie [Sjoberg and Weirich 2015] investigates the design of a dependently
typed language where SMT-style congruence closure is used to reason about the equality of terms.
However, Zombie explicitly eschews type-level computation, as the authors write “equalities that
follow from f-reduction” are “incompatible with congruence closure”. Due to this incompleteness,
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the programmer must use explicit join terms to indicate where normalization should be triggered,
even so, equality checking is based on fuel, hence, is incomplete.

Theorem Provers Reflection shows how to retrofit deep specification and verification in the
style of AGpa [Norell 2007], Coq [Bertot and Castéran 2004] and IsaBELLE [Nipkow et al. 2002]
into existing languages via refinement typing and PLE shows how type-level computation can
be made compatible with SMT solvers’ native theory reasoning yielding a powerful new way to
automate proofs (§ 2.5). An extensive comparison [Vazou et al. 2017] between our approach and
mature theorem provers like CoQ, AGpa, and ISABELLE reveals that these provers have two clear
advantages over our approach: they emit certificates, so they rely on a small trusted computing
base, and they have decades-worth of tactics, libraries, and proof scripts that enable large scale
proof engineering. Some tactics even enable embedding of SMT-based proof search heuristics, e.g.
SLEDGEHAMMER [Blanchette et al. 2011], that is widely used in IsaBELLE. However, this search does
not have the completeness guarantees of PLE. The issue of extracting checkable certificates from
SMT solvers is well understood [Chen et al. 2010; Necula 1997] and easy to extend to our setting.
However, the question of extending SMT-based verifiers with tactics and scriptable proof search,
and more generally, incorporating interactivity in the style of proof-assistants, perhaps enhanced
by proof-completion hints remains an interesting direction for future work.

9 CONCLUSIONS AND FUTURE WORK

Our results identify a new design for deductive verifiers wherein: (1) via Refinement Reflection,
we can encode natural deduction proofs as SMT-checkable refinement typed programs and (2) via
Proof by Logical Evaluation we can combine the complementary strengths of SMT- (i.e., decision
procedures) and TT- based approaches (i.e., type-level computation) to obtain completeness guar-
antees when verifying properties of user-defined functions. However, the increased automation of
SMT and proof-search can sometimes make it harder for a user to debug failed proofs. In future
work, it would be interesting to investigate how to add interactivity to SMT based verifiers, in the
form of tactics and scripts or algorithms for synthesizing proof hints, and to design new ways to
explain and fix refinement type errors.
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