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We introduce Refinement Reflection, a new framework for building SMT-based deductive verifiers. The key idea
is to reflect the code implementing a user-defined function into the function’s (output) refinement type. As a
consequence, at uses of the function, the function definition is instantiated in a precise fashion that permits
decidable verification. We show how reflection allows the user to write equational proofs of programs just by
writing other programs e.g. using pattern-matching and recursion to perform case-splitting and induction.
Thus, via, the propositions-as-types principle we show that reflection permits the specification of arbitrary
functional correctness properties. While equational proofs are easy, writing them out can be exhausting.
We introduce a proof-search algorithm called Proof by Logical Evaluation that uses techniques from model
checking & abstract interpretation, to completely automate equational reasoning. We have implemented
reflection in Liqid Haskell and used it to verify that the widely used instances of the Monoid, Applicative,
Functor, and Monad typeclasses actually satisfy key algebraic laws required to make the clients safe, and to
build the first library that actually verifies assumptions about associativity and ordering that are crucial for
safe deterministic parallelism.

1 INTRODUCTION
Deductive verifiers fall roughly into two camps. Satisfiability Modulo Theory (SMT) based verifiers
(e.g.Dafny and F*) use fast decision procedures to completely automate the verification of programs
that only require reasoning over a fixed set of theories like linear arithmetic, string, set and
bitvector operations. These verifiers, however, encode the semantics of user-defined functions with
universally-quantified axioms and use incomplete (albeit effective) heuristics to instantiate those
axioms. These heuristics make it difficult to characterize the kinds of proofs that can be automated,
and hence, explain why a given proof attempt fails [Leino and Pit-Claudel 2016]. At the other
end, we have Type-Theory (TT) based theorem provers (e.g. Coq and Agda) that use type-level
computation (normalization) to facilitate principled reasoning about terminating user-defined
functions, but which require the user to supply lemmas or rewrite hints to discharge proofs over
decidable theories.
We introduce Refinement Reflection, a new framework for building SMT-based deductive veri-

fiers, which permits the specification of arbitrary properties and yet enables complete, automated
SMT-based reasoning about user-defined functions. In previous work, refinement types [Constable
and Smith 1987; Rushby et al. 1998] — which decorate basic types (e.g. Integer) with SMT-decidable
predicates (e.g. {v:Integer | 0 ≤ v && v < 100}) — were used to retrofit so-called shallow verifi-
cation, such as array bounds checking, into several languages: ML [Bengtson et al. 2008; Rondon
et al. 2008; Xi and Pfenning 1998], C [Condit et al. 2007; Rondon et al. 2010], Haskell [Vazou et al.
2014a], TypeScript [Vekris et al. 2016], and Racket [Kent et al. 2016].
1. Refinement Reflection Our first contribution is the notion of refinement reflection. To rea-
son about user-defined functions, the function’s implementation can be reflected into its (output)
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refinement-type specification, thus converting the function’s type signature into a precise descrip-
tion of the function’s behavior. This simple idea has a profound consequence: at uses of the function,
the standard rule for (dependent) function application yields a precise means of reasoning about
the function (§ 4).

2. Complete Specification Our second contribution is a library of combinators that lets program-
mers compose sophisticated proofs from basic refinements and function definitions. Our proof
combinators let programmers use existing language mechanisms like branches (to encode case
splits), recursion (to encode induction), and functions (to encode auxiliary lemmas) to write proofs
that look very much like their pencil-and-paper analogues (§ 2). Furthermore, since proofs are
literally just programs, we use the principle of propositions-as-types [Wadler 2015] (known as
Curry-Howard isomorphism [Howard 1980]) to show, via a recipe for encoding proofs with alternat-
ing quantifiers, that SMT-based verifiers can express any natural deduction proof, and and provide
a pleasant implementation of natural deduction that can be used for pedagogical purposes (§ 3).

3. Complete Verification While equational proofs can be very easy and expressive, writing them
out can quickly get exhausting. Our third contribution is Proof by Logical Evaluation (PLE) a new
proof-search algorithm that completely automates equational reasoning. The key idea in PLE is
to mimic type-level computation within SMT-logics by representing functions in a guarded form
[Dijkstra 1975] and repeatedly unfolding function application terms by instantiating them with
their definition corresponding to an enabled guard. We formalize a notion of equational proof and
show that the above strategy is complete: i.e. it is guaranteed to find an equational proof if one exists.
Furthermore, using techniques from the literature on Abstract Interpretation [Cousot and Cousot
1977] and Model Checking [Clarke et al. 1992], we show that the above proof search corresponds
to a universal (or must) abstraction of the concrete semantics of the user-defined functions. Thus,
as those functions are total we obtain the pleasing guarantee that proof search terminates (§ 6).

We evaluate our approach by implementing refinement reflection and PLE in LiqidHaskell [Va-
zou et al. 2014a], thereby turning Haskell into a theorem prover. Repurposing an existing program-
ming language allows us to take advantage of a mature compiler and an ecosystem of libraries,
while keeping proofs and programs in the same language. We demonstrate the benefits of this
conversion by proving typeclass laws. Haskell’s typeclass machinery has led to a suite of expressive
abstractions and optimizations which, for correctness, crucially require typeclass instances to obey
key algebraic laws. We show how reflection and PLE can be used to verify that widely used instances
of the Monoid, Applicative, Functor, and Monad typeclasses satisfy the respective laws. Finally, we
use reflection to create the first deterministic parallelism library that actually verifies assumptions
about associativity and ordering that ensure determinism (§ 7).

Thus, our results demonstrate that Refinement Reflection and Proof by Logical Evaluation identify
a new design for deductive verifiers which, by combining the complementary strengths of SMT-
and TT- based approaches, enables complete verification of expressive specifications spanning
decidable theories and user defined functions.

2 OVERVIEW
We start with an overview of how SMT-based refinement reflection lets us write proofs as plain
functions and how PLE automates equational reasoning.

2.1 Refinement Types
First, we recall some preliminaries about specification and verification with refinement types.
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Refinement types are the source program’s (here Haskell’s) types refined with logical predicates
drawn from an SMT-decidable logic [Constable and Smith 1987; Rushby et al. 1998]. For example,
we define Nat as the set of Integer values v that satisfy the predicate 0 ≤ v from the quantifier-free
logic of linear arithmetic and uninterpreted functions (QF-UFLIA [Barrett et al. 2010]):

type Nat = { v:Integer | 0 ≤ v }

Specification & Verification Throughout this section, to demonstrate the proof features we add
to Liqid Haskell, we will use the textbook Fibonacci function which we type as follows.

fib :: Nat → Nat

fib 0 = 0

fib 1 = 1

fib n = fib (n-1) + fib (n-2)

To ensure termination, the input type’s refinement specifies a pre-condition that the parameter
must be Nat. The output type’s refinement specifies a post-condition that the result is also a Nat.
Refinement type checking can automatically verify that if fib is invoked with a non-negative
Integer, then it terminates and yields a non-negative Integer.
Propositions We can define a data type representing propositions as an alias for unit:

type Prop = ()

which can be refined with propositions about the code, e.g. that 2 + 2 equals 4

type Plus_2_2 = { v: Prop | 2 + 2 = 4 }

For simplicity, in Liqid Haskell, we abbreviate the above to type Plus_2_2 = { 2 + 2 = 4 }.
Universal & Existential Propositions Using the standard encoding of Howard [1980], known as
Curry-Howard isomorphism, refinements encode universally-quantified propositions as dependent
function types of the form:

type Plus_comm = x:Integer → y:Integer → { x + y = y + x }

As x and y refer to arbitrary inputs, any inhabitant of the above type is a proof that Integer addition
commutes.

Refinements encode existential quantification via dependent pairs of the form:

type Int_up = n:Integer → (m::Integer, {n < m})

The notation (m :: t, t') describes dependent pairs where the name m for the first element can
appear inside refinements for the second element. Thus, Int_up states the proposition that for every
integer n, there exists one that is larger than n.

While quantifiers cannot appear directly inside the refinements, dependent functions and pairs
allow us to specify quantified propositions. One limitation of this encoding is that quantifiers
cannot exist inside refinement’s logical connectives (like ∧ and ∨). In this paper, we present how
to encode logical connectives using data types, e.g. conjunction as product and disjunction as a
union, and show how to specify arbitrary, quantified propositions using refinement types, i.e. have
complete specifications, and how to verify those propositions using refinement type checking (§ 3).
Proofs We prove the above propositions by writing Haskell programs, for example

plus_2_2 :: Plus_2_2 plus_comm :: Plus_comm int_up :: Int_up

plus_2_2 = () plus_comm = \x y → () int_up = \n → (n+1,())
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Standard refinement typing reduces the above to the respective verification conditions (VCs)
true ⇒ 2 + 2 = 4 ∀ x , y . true ⇒ x + y = y + x ∀ n .n < n + 1

which are easily deemed valid by the SMT solver, allowing us to prove the respective propositions.
A Note on Bottom: Readers familiar with Haskell’s semantics may be concerned that “bottom”,
which inhabits all types, makes our proofs suspect. Fortunately, as described in Vazou et al. [2014a],
Liqid Haskell ensures that all terms with non-trivial refinements provably terminate and evaluate
to (non-bottom) values, which makes our proofs sound.

2.2 Refinement Reflection
Suppose we wish to prove properties about the fib function, e.g. that {fib 2 = 1}. Standard
refinement type checking runs into two problems. First, for decidability and soundness, arbitrary
user-defined functions cannot belong in the refinement logic, i.e. we cannot refer to fib in a
refinement. Second, the only specification that a refinement type checker has about fib is its type
Nat → Nat which is too weak to verify {fib 2 = 1}. To address both problems, we reflect fib

into the logic which sets the three steps of refinement reflection in motion.
Step 1: Definition The annotation creates an uninterpreted function fib :: Integer → Integer in
the refinement logic. By uninterpreted, we mean that the logical fib is not connected to the program
function fib; in the logic, fib only satisfies the congruence axiom ∀n,m. n =m ⇒ fib n = fibm.
On its own, the uninterpreted function is not terribly useful: we cannot check {fib 2 = 1} as the
SMT solver cannot prove the VC true ⇒ fib 2 = 1 which requires reasoning about fib’s definition.
Step 2: Reflection In the next key step, we reflect the definition of fib into its refinement type by
automatically strengthening the user defined type for fib to:

fib :: n:Nat → { v:Nat | v = fib n && fibP n }

where fibP is an alias for a refinement automatically derived from the function’s definition:
fibP n = n == 0 ⇒ fib n = 0

∧ n == 1 ⇒ fib n = 1

∧ n >= 1 ⇒ fib n = fib (n-1) + fib (n-2)

Step 3: Application With the reflected refinement type, each application of fib in the code
automatically unfolds the definition of fib once in the logic. We prove {fib 2 = 1} by:

pf_fib2 :: { fib 2 = 1 }

pf_fib2 = let { t0 = fib 0; t1 = fib 1; t2 = fib 2 } in ()

We write in bold red, f, to highlight places where the unfolding of f’s definition is important. Via
refinement typing, the above yields the following VC that is discharged by SMT, even though fib

is uninterpreted:
((fibP 0) ∧ (fibP 1) ∧ (fibP 2)) ⇒ (fib 2 = 1)

Note that the verification of pf_fib2 relies merely on the fact that fib is applied to (i.e. unfolded at)
0, 1 and 2. The SMT solver automatically combines the facts, once they are in the antecedent. The
following is also verified:

pf_fib2 ' :: {v:[Nat] | fib 2 = 1 }

pf_fib2 ' = [ fib 0, fib 1, fib 2 ]

In the next subsection, we will continue to use explicit, step-by-step proofs as above, but we
introduce additional tools for proof composition. Then, in § 2.4 we will eliminate unnecessary
details in such proofs, using Proof by Logical Evaluation (PLE) for automation.
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2.3 Equational Proofs
We can structure proofs to follow the style of calculational or equational reasoning popularized in
classic texts [Bird 1989; Dijkstra 1976] and implemented in Agda [Mu et al. 2009] and Dafny [Leino
and Polikarpova 2016]. To this end, we have developed a library of proof combinators that permits
reasoning about equalities and linear arithmetic.
“Equation” Combinators We equip Liqid Haskell with a family of equation combinators, ⊙,
for logical operators in the theory QF-UFLIA, ⊙ ∈ {=,,, ≤, <, ≥, >}. (In Haskell code, to avoid
collisions with existing operators, we further append a period “.” to these operators, so that “=”
becomes “=.” instead.) The refinement type of ⊙ requires that x ⊙ y holds and then ensures that the
returned value is equal to x. For example, we define =. as:

(=.) :: x:a → y:{ a | x = y} → { v:a | v = x }

x =. _ = x

and use it to write the following “equational” proof:

fib2_1 :: { fib 2 = 1 }

fib2_1 = fib 2 =. fib 1 + fib 0 =. 1 ** QED

where ** QED constructs “proof terms” by “casting” expressions to Prop in a post-fix fashion.

data QED = QED (**) :: a → QED → Prop

_ ** QED = ()

“Because” Combinators Often, we need to compose lemmas into larger theorems. For example, to
prove fib 3 = 2 we may wish to reuse fib2_1 as a lemma. We do so with a “because” combinator:

(∵) :: (Prop → a) → Prop → a

f ∵ y = f y

The operator is simply an alias for function application that lets us write x ⊙ y ∵ p. We use the
because combinator to prove that fib 3 = 2.

fib3_2 :: { fib 3 = 2 }

fib3_2 = fib 3 =. fib 2 + fib 1 =. 2 ∵ fib2_1 ** QED

Here fib 2 is not important to unfold, because fib2_1 already provides the same information.
Arithmetic and Ordering Next, lets see how we can use arithmetic and ordering to prove that
fib is (locally) increasing, i.e. for all n, fib n ≤ fib (n + 1).

type Up f = n:Nat → {f n ≤ f (n + 1)}

fibUp :: Up fib

fibUp 0 = fib 0 <. fib 1 ** QED

fibUp 1 = fib 1 ≤. fib 1 + fib 0 =. fib 2 ** QED

fibUp n = fib n ≤. fib n + fib (n-1) =. fib (n+1) ** QED

Case Splitting The proof fibUp works by splitting cases on the value of n. In the base cases 0

and 1, we simply assert the relevant inequalities. These are verified as the reflected refinement
unfolds the definition of fib at those inputs. The derived VCs are (automatically) proved as the SMT
solver concludes 0 < 1 and 1 + 0 ≤ 1 respectively. When n is greater than two, fib n is unfolded to
fib (n-1) + fib (n-2), which, as fib (n-2) is non-negative, completes the proof.
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Induction & Higher Order Reasoning Refinement reflection smoothly accomodates induction
and higher-order reasoning. For example, lets prove that every function f that increases locally (i.e.
f z ≤ f (z+1) for all z) also increases globally (i.e. f x ≤ f y for all x < y)

type Mono = f:(Nat → Integer) → Up f → x:_ → y:{x < y} → {f x ≤ f y}

fMono :: Mono / [y]

fMono f up x y

| x+1 == y = f x ≤. f (x+1) ∵ up x ≤. f y ** QED

| x+1 < y = f x ≤. f (y-1) ∵ fMono f up x (y-1) ≤. f y ∵ up (y-1) ** QED

We prove the theorem by induction on y as specified by the annotation / [y] which states that
y is a well-founded termination metric that decreases at each recursive call [Vazou et al. 2014a].
If x+1 == y, then we call the up x proof argument. Otherwise, x+1 < y, and we use the induction
hypothesis i.e. apply fMono at y-1, after which transitivity of the less-than ordering finishes the
proof. We can apply the general fMono theorem to prove that fib increases monotonically:

fibMono :: n:Nat → m:{n < m} → {fib n ≤ fib m}

fibMono = fMono fib fibUp

2.4 Complete Verification: Automating Equational Reasoning
While equational proofs can be very easy, writing them out can quickly get exhausting. Lets face
it: fib3_2 is doing rather a lot of work just to prove that fib 3 equals 2! Happily, the calculational
nature of such proofs allows us to develop the following proof search algorithm PLE that is inspired
by model checking [Clarke et al. 1992]:
• Step 1: Guard Normal Form First, as shown in the definition of fibP above, each reflected
function is transformed into a guard normal form ∧i (pi ⇒ f (x ) = bi ) i.e. as a collection of
guards pi and their corresponding definition bi .
• Step 2: Unfolding Second, given a VC of the form Φ ⇒ p, we iteratively unfold function
application terms in Φ and p by instantiating them with the definition corresponding to
an enabled guard, where we check enabled-ness by querying the SMT solver. For example,
given a VC true ⇒ fib 3 = 2, the guard 3 ≥ 1 is trivially enabled, i.e. is true, and hence we
strengthen the hypothesis Φ with the equality fib 3 = fib 3 − 1 + fib 3 − 2 corresponding
to unfolding the definition of fib at 3.
• Step 3: Fixpoint Third, we repeat the above process until either the goal is proved or we
have reached a fixpoint, i.e. no further unfolding is enabled. For example, the above fixpoint
computation unfolds the definition of fib at 3, 2, 1, and 0 and then stops as no further guards
are enabled.

Automatic Equational Reasoning In § 6 we formalize a notion of equational proof and show
that the proof search procedure PLE enjoys two key properties. First, that it is guaranteed to find
an equational proof if one exists. Second, that under certain conditions readily met in practice, it is
guaranteed to terminate. These two properties allow us to use PLE to predictably automate proofs:
the programmer needs only supply the relevant induction hypotheses or helper lemma applications.
The remaining long chains of calculations are performed automatically via SMT-based PLE. (That
is, they must provide case statements and recursive structure, but not chains of =. applications.) To
wit, with complete proof search, the above proofs shrink to:
fib3_2 :: {fib 3 = 2} fibUp :: Up fib fMono :: Mono / [y]

fib3_2 = () fibUp 0 = () fMono f up x y
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app_assoc :: AppendAssoc
app_assoc [] ys zs

= ([] ++ ys) ++ zs
=. ys ++ zs
=. [] ++ (ys ++ zs) ** QED

app_assoc (x:xs) ys zs
= ((x : xs) ++ ys) ++ zs
=. (x : (xs ++ ys)) ++ zs
=. x :((xs ++ ys) ++ zs)
∵ app_assoc xs ys zs

=. x : (xs ++ (ys ++ zs))
=. (x : xs) ++ (ys ++ zs) ** QED

app_assoc :: AppendAssoc
app_assoc [] ys zs = ()
app_assoc (x:xs) ys zs = app_assoc xs ys zs

app_right_id :: AppendNilId
app_right_id [] = ()
app_right_id (x:xs) = app_right_id xs

map_fusion :: MapFusion
map_fusion f g [] = ()
map_fusion f g (x:xs) = map_fusion f g xs

Fig. 1. (L) Equational proof of append associativity, (R) PLE proof, also of append-id and map-fusion.

fibUp 1 = () | x+1 == y = up x

fibUp n = () | x+1 < y = up (y-1) &&& fMono up x (y-1)

where the combinator p &&& q = () inserts the propositions p and q to the VC hypothesis.
PLE vs. Axiomatization Existing SMT based verifiers like Dafny [Leino 2010] and F* [Swamy
et al. 2016] use the classical axiomatic approach to verify assertions over user-defined functions
like fib. In these systems, the function is encoded in the logic as a universally quantified formula
(or axiom): ∀n. fibP n after which the SMT solver may instantiate the above axiom at 3, 2, 1 and 0

in order to automatically prove {fib 3 = 2}.
The automation offered by axioms is a bit of a devil’s bargain, as axioms render VC checking

undecidable, and in practice automatic axiom instantation can easily lead to infinite “matching
loops”. For example, the existence of a term fib n in a VC can trigger the above axiom, which may
then produce the terms fib (n − 1) and fib (n − 2), which may then recursively give rise to further
instantiations ad infinitum. To prevent matching loops an expert must carefully craft “triggers” or,
alternatively provide a “fuel” parameter [Amin et al. 2014] that bounds the depth of instantiation.
Both these approaches ensure termination, but can cause the axiom to not be instantiated at the
right places, thereby rendering the VC checking incomplete. The incompleteness is illustrated by
the following example from the Dafny benchmark suite [Leino 2016]

pos n | n < 0 = 0 test :: y:{y > 5} → {pos n = 3 + pos (n-3)}

| otherwise = 1 + pos (n-1) test _ = ()

Dafny (and F*’s) fuel-based approach fails to check the above, when the fuel value is less than 3.
One could simply raise-the-fuel-and-try-again but at what point does the user know when to stop?
In contrast, PLE (1) does not require any fuel parameter, (2) is able to automatically perform the
required unfolding to verify this example, and (3) is guaranteed to terminate.

2.5 Case Study: Laws for Lists
Reflection and PLE are not limited to integers. We end the overview by showing how they verify
textbook properties of lists equipped with append (++) and map functions:
reflect (++) :: [a] → [a] → [a] reflect map :: (a → b) → [a] → [b]

[] ++ ys = ys map f [] = []

(x:xs) ++ ys = x : (xs ++ ys) map f (x:xs) = f x : map f xs
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In § 5.1 we will describe how the reflection mechanism illustrated via fibP is extended to account
for ADTs using SMT-decidable selection and projection operations, which reflect the definition of
++ into the refinement as: if isNil xs then ys else sel1 xs : (sel2 xs ++ ys). Note that Liqid
Haskell automatically checks that ++ and map are total [Vazou et al. 2014a], which lets us safely
reflect them into the refinement logic.
Laws We can specify various laws about lists with refinement types. For example, the below
laws state that (1) appending to the right is an identity operation, (2) appending is an associative

operation, and (3) map distributes over function composition:
type AppendNilId = xs:_ → { xs ++ [] = xs }

type AppendAssoc = xs:_ → ys:_ → zs:_ → { xs ++ (ys ++ zs) = (xs ++ ys) ++ zs }

type MapFusion = f:_ → g:_ → xs:_ → { map (f . g) xs = map (f . map g) xs }

Proofs On the right in Figure 1 we show the proofs of these laws using PLE, which should be
compared to the classical equational proof e.g. [Wadler 1987] shown on the left. With PLE, the
user need only provide the high-level structure — the case splits and invocations of the induction
hypotheses — after which PLE automatically completes the rest of the equational proof. Thus using
SMT-based PLE, app_assoc shrinks down to its essence: an induction over the list xs. The difference
is even more stark with map_fusion whose full equational proof is omitted, as it is twice as long.
PLE vs. Normalization The proofs in Figure 1 may remind readers familiar with Type-Theory
based proof assistants (e.g. Coq or Agda) of the notions of type-level normalization and rewriting

that permit similar proofs in those systems. While our approach of PLE is inspired by the idea of
type level computation, it differs from it in two significant ways. First, from a theoretical point of
view, SMT logics are not equipped with any notion of computation, normalization, canonicity or
rewriting. Instead, our PLE algorithm shows how to emulate those ideas by asserting equalities
corresponding to function definitions (Theorem 6.10). Second, from a practical perspective, the
combination of (decidable) SMT-based theory reasoning and PLE’s proof search can greatly simplify
verification. For example, consider the swap function from a Coq textbook [Appel 2016]:

swap :: [Integer] → [Integer]

swap (x1:x2:xs) = if x1 > x2 then x2:x1:x2 else x1:x2:xs

swap xs = xs

In Figure 2 we show four proofs that swap is idempotent: Appel’s proof using Coq (simplified by
the use of a hint database and the arithmetic tacic omega), its variant in Agda (for any Decidable
Partial Order), the PLE proof, and a proof using the Dafny verifier. It is readily apparent that PLE’s
proof search working hand-in-glove with SMT-based theory reasoning makes proving the result
relatively trivial. Of course, proof assistants like Agda, Coq, and Isabelle emit easily checkable
certificates and have decades-worth of tactics, libraries and proof scripts that enable large scale
proof engineering. On the other hand, Dafny’s fuel-based axiom instantiation automatically unfolds
the definition of swap twice, which thereby completing the proof without any user input. Note
that these heuristics are orthogonal to PLE and can be combined with it, if the user wishes to trade
off predictability for even more automation.
Summary We saw an overview of an SMT-automated refinement type checker that achieves SMT-
decidable checking by restricting verification conditions to be quantifier-free and hence, decidable.
In existing SMT-based verifiers (e.g. Dafny) there are two main reasons to introduce quantifiers,
namely (1) to express quantified specifications, and (2) to encode the semantics of user-defined
functions. Next, we use propositions-as-types to encode quantified specifications and in § 4 we
show how to encode the semantics of user-defined functions via refinement reflection.
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Fig. 2. Proofs that swap is idempotent with Coq, Agda, Dafny and PLE.

3 EMBEDDING NATURAL DEDUCTIONWITH REFINEMENT TYPES
In this section we show how user-provided quantified specifications can be naturally encoded using
λ-abstractions and dependent pairs to encode universal and existential quantification respectively.
Proof terms can be generated using the standard natural deduction derivation rules, following
Propositions as Types [Wadler 2015] (also known as the Curry-Howard isomorphism [Howard
1980]). What is new is that we exploit this encoding to show for the first time that a refinement
type system can represent any proof in Gentzen’s natural deduction [Gentzen 1935] while still
taking advantage of SMT decision procedures to automate the quantifier-free portion of natural
deduction proofs. For simplicity, in this section we assume all terms are total; we formalize and
relax this requirement in the sequel.

3.1 Propositions: Refinement Types
Figure 3 maps logical predicates to types constructed over quantifier-free refinements.

Native terms Native terms consist of all of the (quantifier-free) expressions of the refinement
languages. In § 4 we formalize refinement typing in a core calculus λR where refinements include
(quantifier-free) terminating expressions.

Boolean connectives Implication ϕ1 ⇒ ϕ2 is encoded as a function from the proof of ϕ1 to the
proof of ϕ2. Negation is encoded as an implication where the consequent is False. Conjunction
ϕ1 ∧ ϕ2 is encoded as the pair (ϕ1, ϕ2) that contains the proofs of both conjuncts and disjunction
ϕ1 ∨ϕ2 is encoded as the sum type Either that contains the proofs of one of the disjuncts, i.e. where
data Either a b = Left a | Right b.

Quantifiers Universal quantification ∀x .ϕ is encoded as lambda abstraction x : τ → ϕ and
eliminated by function application. Existential quantification ∃x .ϕ is encoded as a dependent pair
(x::τ, ϕ) that contains the term x and a proof of a formula that depends on x . Even though
refinement type systems do not traditionally come with explicit syntax for dependent pairs, one
can encode dependent pairs in refinements using abstract refinement types [Vazou et al. 2013]
which do not add extra complexity to the system. Consequently, we add the syntax for dependent
pairs in Figure 3 as syntactic sugar for abstract refinements.
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Logical Formula Refinement Type

Native Terms e {e}
Implication ϕ1 ⇒ ϕ2 ϕ1 → ϕ2
Negation ¬ϕ ϕ → {False}

Conjunction ϕ1 ∧ ϕ2 (ϕ1,ϕ2)
Disjunction ϕ1 ∨ ϕ2 Either ϕ1 ϕ2

Forall ∀x .ϕ x : τ → ϕ
Exists ∃x .ϕ (x :: τ ,ϕ)

Fig. 3. Mapping from logical predicates to quantifier-free refinement types. {e} abbreviates {v : Prop | e}.
Function binders are not relevant for negation and implication, and hence, elided.

3.2 Proofs: Natural Deduction
We overload ϕ to be both a proposition and a refinement type. We connect these two meanings of
ϕ by using the Propositions as Types [Wadler 2015], to prove that if there exists an expression (or
proof term) with refinement type ϕ, then the proposition ϕ is valid.
We construct proofs terms using Gentzen’s natural deduction system [Gentzen 1935], whose

rules map directly to refinement type derivations. The rules for natural deduction arise from the
propositions-as-types reading of the standard refinement type checking rule (to be defined in § 4)
Γ ⊢ e : ϕ as “ϕ is provable under the assumptions of Γ”. We write Γ ⊢ND ϕ for Gentzen’s natural
deduction judgement “under assumption Γ, proposition ϕ holds”. Then, each of Gentzen’s logical
rules can be recovered from the rules in Figure 5 by rewriting each judgement Γ ⊢ e : ϕ of λR as
Γ ⊢ND ϕ. For example, conjunction and universal elimination can be derived as:

Γ ⊢ND ϕ1 ∨ ϕ2 Γ,ϕ1 ⊢ND ϕ Γ,ϕ2 ⊢ND ϕ

Γ ⊢ND ϕ
∨-E

Γ ⊢ND ex term Γ ⊢ND ∀x .ϕ

Γ ⊢ND ϕ[x/ex ]
∀-E

Programs as Proofs As Figure 5 directly maps natural deduction rules to derivations that are
accepted by refinement typing, we conclude that if there exists a natural deduction derivation for a
proposition ϕ, then there exists an expression that has the refinement type ϕ.

Theorem 3.1. If Γ ⊢ND ϕ, then we can construct an e such that Γ ⊢ e : ϕ.

Note that our embedding is not an isomorphism, since the inverse of Theorem 3.1 does not hold.
As a counterexample, the law of the excluded middle (i.e. p : {True} ⊢ () : p ∧ ¬p) is evident in our
system, but cannot be proved using natural deduction (i.e. {True} ⊬ND p ∧ ¬p). The reason for that
is that our system is using the classical logic of the SMTs, that includes the law of the excluded
middle. On the contrary, in intuitionistic systems that also encode natural deduction (e.g. Coq,
Idris, NuPRL) the law of the excluded middles should be axiomatized.

3.3 Examples
Next, we illustrate our encoding with examples of proofs for quantified propositions ranging from
textbook logical tautologies, properties of datatypes like lists, and induction on natural numbers.
Natural Deduction as TypeDerivation We illustrate themapping from natural deduction rules to
typing rules in Figure 4 which uses typing judgments to express Gentzen’s proof of the proposition

ϕ ≡ (∃x .∀y.(p x y)) ⇒ (∀y.∃x .(p x y))

Read bottom-up, the derivation provides a proof of ϕ. Read top-down, it constructs a proof of the
formula as the term λe y.case e of {(x , ex ) → (x , ex y)}. This proof term corresponds directly to
the following Haskell expression that typechecks with type ϕ.
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e :ϕe ,y :τy ⊢ e : ϕe

e :ϕe ,y :τy ,x :tx , ex :ϕx ⊢ ex : ϕx
e :ϕe ,y :τy ,x :tx , ex :ϕx ⊢ y : τy

e :ϕe ,y :τy ,x :tx , ex :ϕx ⊢ ex y : p x y
∀-E

e :ϕe ,y :τy ⊢ case e of {(x , ex ) → (x , ex y)} : ∃x .(p x y)
∃-E

e :ϕe ⊢ λy.case e of {(x , ex ) → (x , ex y)} : ∀y.∃x .(p x y)
∀-I

∅ ⊢ λe y.case e of {(x , ex ) → (x , ex y)} : (∃x .∀y.(p x y)) ⇒ (∀y.∃x .(p x y))
⇒ -I

Fig. 4. Proof of (∃x .∀y.(p x y)) ⇒ (∀y.∃x .(p x y)) where ϕe ≡ ∃x .∀y.(p x y), ϕx ≡ ∀y.(p x y).

exAll :: p:(a→ a→ Bool)→ (x::a,y:a→ {p x y})→ y:a→ (x::a,{p x y})

exAll e = \e y → case e of {(x,ex) → (x,ex y)}

SMT-aided proofs The great benefit of using refinement types to encode natural deduction is
that the quantifier-free portions of the proof can be automated via SMTs. For every quantifier-free
proposition ϕ, you can convert between {ϕ}, where ϕ is treated as an SMT-proposition and ϕ, where
ϕ is treated as a type; and this conversion goes both ways. For example, let ϕ ≡ p ∧ (q | |r ) Then
flatten converts from ϕ to {ϕ} and expand the other way, while this conversion is SMT-aided.

flatten :: p:_→ q:_→ r:_→ ({p}, Either {q} {r}) → {p && (q || r)}

flatten (pf, Left qf) = pf &&& qf

flatten (pf, Right rf) = pf &&& rf

expand :: p:_→ q:_→ r:_→ {p && (q || r)} → ({p}, Either {q} {r})

expand proof | q = (proof , Left proof)

expand proof | r = (proof , Right proof)

Distributing Quantifiers Next, we construct the proof terms needed to prove two logical prop-
erties: that existentials distribute over disjunctions and foralls over conjunctions, i.e.

ϕ∃ ≡ (∃x .p x ∨ q x ) ⇒ ((∃x .p x ) ∨ (∃x .q x )) (1)
ϕ∀ ≡ (∀x .p x ∧ q x ) ⇒ ((∀x .p x ) ∧ (∀x .q x )) (2)

The specification of these properties requires nesting quantifiers inside connectives and vice versa.
The proof of ϕ∃ (1) proceeds by existential case splitting and introduction:

exDistOr :: p:_ → q:_ → (x::a, Either {p x} {q x})

→ Either (x::a, {p x}) (x::a, {q x})

exDistOr _ _ (x,Left px) = Left (x,px)

exDistOr _ _ (x,Right qx) = Right (x,qx)

Dually, we prove ϕ∀ (2) via a λ-abstraction and case spitting inside the conjunction pair:
allDistAnd :: p:_ → q:_ → (x:a→ ({p x}, {q x}))

→ ((x:a→ {p x}), (x:a→ {q x}))

allDistAnd _ _ andx = ( (\x → case andx x of (px, _) → px)

, (\x → case andx x of (_, qx) → qx) )

The above proof term exactly corresponds to its natural deduction proof derivation but using
SMT-aided verificaiton can get simplified to the following

allDistAnd _ _ andx = (pf, pf)

where pf x = case andx x of (px, py) → px &&& py
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Γ ⊢ fst e : ϕ1
Γ ⊢ snd e : ϕ2

Γ ⊢ e : (ϕ1,ϕ2)
∧-I

Γ ⊢ e : (ϕ1,ϕ2)

Γ ⊢ fst e : ϕ1
∧-L-E

Γ ⊢ e : (ϕ1,ϕ2)

Γ ⊢ snd e : ϕ2
∧-R-E

Γ ⊢ e1 : ϕ1

Γ ⊢ Left e1 : Either ϕ1 ϕ2
∨-L-I Γ ⊢ e : Either ϕ1 ϕ2

Γ,x1 :ϕ1 ⊢ e1 : ϕ Γ,x2 :ϕ2 ⊢ e2 : ϕ
Γ ⊢ case e of {Left x1 → e1; Right x2 → e2} : ϕ

∨-EΓ ⊢ e1 : ϕ2

Γ ⊢ Right e2 : Either ϕ1 ϕ2
∨-R-I

Γ,x :ϕx ⊢ e : ϕ
Γ ⊢ λx .e : ϕx → ϕ

⇒ -I
Γ ⊢ e : ϕx → ϕ Γ ⊢ ex : ϕx

Γ ⊢ e ex : ϕ
⇒ -E

Γ,x :τ ⊢ e : ϕ
Γ ⊢ λx .e : (x : τ → ϕ)

∀-I
Γ ⊢ ex : τ Γ ⊢ e : (x : τ → ϕ)

Γ ⊢ e ex : ϕ[x/ex ]
∀-E

Γ ⊢ fst e : τ Γ,x :τ ⊢ snd e : ϕ
Γ ⊢ e : (x :: τ ,ϕ[x/fst e])

∃-I
Γ ⊢ e : (x :: τ ,ϕx ) Γ,x :τ ,y :ϕx ⊢ e ′ : ϕ

Γ ⊢ case e of {(x ,y) → e ′} : ϕ
∃-E

Fig. 5. Natural deduction rules for refinement types. With [fst|snd] e ≡ case e of {(x1,x2) → [x1 |x2]} .

Properties of User Defined Datatypes As ϕ can describe properties of data types like lists, we
can prove properties of such types, e.g. that for every list xs, if there exists a list ys such that
xs == ys ++ ys ,then xs has even length.

ϕ ≡ ∀xs .((∃ys . xs = ys ++ ys ) ⇒ (∃n.len xs = n + n))

The proof (evenLen) proceeds by existential elimination and introduction, and uses the lenAppend

lemma, which uses induction on the input list and PLE to automate equational reasoning.
evenLen :: xs:[a]→ (ys::[a],{xs = ys ++ ys})→ (n::Int ,{len xs = n+n})

evenLen xs (ys,pf) = (len ys, lenAppend ys ys &&& pf)

lenAppend :: xs:_ → ys:_ → {len (xs ++ ys) = len xs + len ys}

lenAppend [] _ = ()

lenAppend (x:xs) ys = lenAppend xs ys

Induction on Natural Numbers Finally, we specify and verify induction on natural numbers:

ϕind ≡ (p 0 ∧ (∀n.p (n − 1) ⇒ p n) ⇒ ∀n.p n)

The proof proceeds by induction (e.g. case splitting). In the base case, n == 0, the proof calls the left
conjunct, which contains a proof of the base case. Otherwise, 0 < n, the proof applies the induction
hypothesis to the right conjunct instantiated at n-1.

ind :: p:_ → ({p 0}, (n:Nat→ {p (n-1)}→ {p n})) → n:Nat → {p n}

ind p (p0, pn) 0 = p0

ind p (p0, pn) n = pn n (ind p (p0, pn) (n-1))

3.4 Consequences
To summarize, we use the propositions-as-types principle to make two important contributions.
First, we show that natural deduction reasoning can smoothly co-exist with SMT-based verification
to automate the decidable, quantifier-free portions of the proof.
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Ops. ⊙ ::= = | <

Consts. c ::= ∧ | ! | ⊙ | +,−, . . .
| True | False | 0, 1, . . .

Vals.w ::= c | λx .e | D w

Exprs. e ::= w | x | e e
| case x = e of {D x → e}

Binds. b ::= e | let rec x : τ = b in b

Progs. p ::= b | reflect x : τ = e in p

Bas. Types B ::= Int | Bool | T

Ref. Types τ ::= {v : B[⇓] | e} | x :τx → τ

Preds. p ::= p ▷◁ p | ⊕1p
| n | b | x | D | x p
| if p then p else p

Ints. n ::= 0,−1, 1, . . .
Bools. b ::= True | False

Bin-Ops. ▷◁ ::= = | < | ∧ | +,−, . . .

Un-Ops. ⊕1 ::= ! | . . .

Args. sa ::= Int | Bool | U
| Fun sa sa

Sorts s ::= sa | sa → s

Fig. 6. (Left) Syntax of λR : Denotational Typing. (Right) Syntax of λS : Algorithmic Typing.

Second, we show for first time how natural deduction proofs can be encoded in refinement type
systems like Liqid Haskell and we expect this encoding to extend, in a straight-forward manner
to other SMT-based deductive verifiers (e.g. Dafny and F*). This encoding shows that refinement
type systems are expressive enough to encode any intuitionistic natural deduction proof, gives a
guideline for encoding proofs with nested quantifiers, and provides a pleasant implementation of
natural deduction that is pedagogically useful.

4 REFINEMENT REFLECTION: λR

Refinement reflection encodes recursive functions in the quantifier-free, SMT logic and it is for-
malized in three steps. First, we develop a core calculus λR with an undecidable type system based
on denotational semantics. We show how the soundness of the type system allows us to prove

theorems using λR . Next, in § 5 we define a language λS that soundly approximates λR while enabling
decidable SMT-based type checking. Finally, in § 6 we develop a complete proof search algorithm
to automate equational reasoning.

4.1 Syntax
Figure 6 summarizes the syntax of λR , which is essentially the calculus λU [Vazou et al. 2014a]
with explicit recursion and a special reflect binding to denote terms that are reflected into the
refinement logic. The elements of λR are constants, values, expressions, binders and programs.
Constants The constants of λR include primitive relations ⊙, here, the set {=, <}. Moreover, they
include the booleans True, False, integers −1, 0, 1, etc., and logical operators ∧, !, etc..
Data Constructors Data constructors are special constants. For example, the data type [Int],
which represents finite lists of integers, has two data constructors: [] (nil) and : (cons).
Values & Expressions The values of λR include constants, λ-abstractions λx .e , and fully applied
data constructorsD that wrap values. The expressions of λR include values, variables x , applications
e e , and case expressions.
Binders & Programs A binder b is a series of possibly recursive let definitions, followed by an
expression. A program p is a series of reflect definitions, each of which names a function that is
reflected into the refinement logic, followed by a binder. The stratification of programs via binders
is required so that arbitrary recursive definitions are allowed in the program but cannot be inserted
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into the logic via refinements or reflection. (We can allow non-recursive let binders in expressions
e , but omit them for simplicity.)

4.2 Operational Semantics
We define ↪→ to be the small step, call-by-name β-reduction semantics for λR . We evaluate reflected
terms as recursive let bindings, with termination constraints imposed by the type system:

reflect x : τ = e in p ↪→ let rec x : τ = e in p

We define ↪→⋆ to be the reflexive, transitive closure of ↪→ . Moreover, we define ≈β to be the
reflexive, symmetric, and transitive closure of ↪→ .
Constants Application of a constant requires the argument be reduced to a value; in a single step,
the expression is reduced to the output of the primitive constant operation, i.e. c v ↪→ δ (c,v ). For
example, consider =, the primitive equality operator on integers. We have δ (=,n) � =n where
δ (=n ,m) equals True iffm is the same as n.
Equality We assume that the equality operator is defined for all values, and, for functions, is
defined as extensional equality. That is, for all f and f ′, ( f = f ′) ↪→ True iff ∀v . f v ≈β f ′ v . We
assume source terms only contain implementable equalities over non-function types; while function
extensional equality only appears in refinements.

4.3 Types
λR types include basic types, which are refined with predicates, and dependent function types. Basic
types B comprise integers, booleans, and a family of data-types T (representing lists, trees etc.).
For example, the data type [Int] represents lists of integers. We refine basic types with predicates
(boolean-valued expressions e) to obtain basic refinement types {v : B | e}. We use ⇓ to mark provably
terminating computations and use refinements to ensure that if e:{v : B⇓ | e ′}, then e terminates. As
discussed by Vazou et al. [2014a] termination labels can be checked using refinement types and are
used to ensure that refinements cannot diverge as required for soundness of type checking under
lazy evaluation. Termination checking is crucial for this work, as combined with syntactic checks
for exhaustive definitions, it ensures totality (well-formedness) of expressions as required both by
propositions-as-types (§ 3) and termination of PLE (§ 6). Finally, we have dependent function types

x :τx → τ where the input x has the type τx and the output τ may refer to the input binder x . We
write B to abbreviate {v : B | True}, and τx → τ to abbreviate x :τx → τ if x does not appear in τ .
Denotations Each type τ denotes a set of expressions [[τ ]], that is defined via the operational
semantics [Knowles and Flanagan 2010]. Let shape(τ ) be the type we get if we erase all refinements
from τ and e : shape(τ ) be the standard typing relation for the typed lambda calculus. Then, we
define the denotation of types as:

[[{x : B | r }]] � {e | e : B, if e ↪→⋆ w then r [x/w] ↪→⋆ True}

[[{x : B⇓ | r }]] � [[{x : B | r }]] ∩ {e | ∃ w .e ↪→⋆ w }

[[x :τx → τ ]] � {e | e : shape(τx → τ ),∀ex ∈ [[τx ]]. (e ex ) ∈ [[τ [x/ex ]]]}

Constants For each constant c we define its type prim(c ) such that c ∈ [[prim(c )]]. For example,

prim(3) � {v : Int⇓ | v = 3}
prim(+) � x :Int⇓ → y :Int⇓ → {v : Int⇓ | v = x + y}
prim(≤) � x :Int⇓ → y :Int⇓ → {v : Bool⇓ | v ⇔ x ≤ y}
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4.4 Refinement Reflection
Reflection strengthens function output types with a refinement that reflects the definition of the
function in the logic. We do this by treating each reflect-binder (reflect f : τ = e in p) as a
let rec-binder (let rec f : Reflect(τ , e ) = e in p) during type checking (rule T-Refl in Figure 7).
Reflection We write Reflect(τ , e ) for the reflection of the term e into the type τ , defined as

Reflect({v : B⇓ | r }, e ) � {v : B⇓ | r ∧v = e}
Reflect(x :τx → τ , λx .e ) � x :τx → Reflect(τ , e )

As an example, recall from § 2 that the reflect fib strengthens the type of fibwith the refinement
fibP. That is, let the user specified type of fib be tfib and the its definition be definition λn.efib.

tfib � {v : Int⇓ | 0 ≤ v} → {v : Int⇓ | 0 ≤ v}

efib � case x = n ≤ 1 of {True→ n; False→ fib(n − 1) + fib(n − 2)}
Then, the reflected type of fib will be:

Reflect(tfib, efib) = n : {v : Int⇓ | 0 ≤ v} → {v : Int⇓ | 0 ≤ v ∧v = efib}

Termination Checking We defined Reflect(·, ·) to be a partial function that only reflects provably
terminating expressions, i.e. expressions whose result type is marked with ⇓. If a non-provably
terminating function is reflected in an λR expression then type checking will fail (with a reflection
type error in the implementation). This restriction is crucial for soundness, as diverging expressions
can lead to inconsistencies. For example, reflecting the diverging f x = 1 + f x into the logic leads
to an inconsistent system that is able to prove 0 = 1.
Automatic Reflection Reflection of λR expressions into the refinements happens automatically
by the type system, not manually by the user. The user simply annotates a function f as reflect f .
Then, the rule T-Refl in Figure 7 is used to type check the reflected function by strengthening the
f ’s result via Reflect(·, ·). Finally, the rule T-Let is used to check that the automatically strengthened
type of f satisfies f ’s implementation.

4.5 Typing Rules
Next, we present the type-checking rules of λR , as found in Figure 7.
Environments and Closing Substitutions A type environment Γ is a sequence of type bindings
x1 : τ1, . . . ,xn : τn . An environment denotes a set of closing substitutions θ which are sequences of
expression bindings: x1 7→ e1, . . . , xn 7→ en such that:

[[Γ]] � {θ | ∀x : τ ∈ Γ.θ (x ) ∈ [[θ · τ ]]}
where θ · τ applies a substitution to a type (and likewise θ · p, to a program).

A reflection environment R is a sequence that binds the names of the reflected functions with
their definitions f1 7→ e1, . . . , fn 7→ en . A reflection environment respects a type environment
when all reflected functions satisfy their types:

Γ |= R � ∀( f 7→ e ) ∈ R. ∃τ . ( f : τ ) ∈ Γ ∧ (Γ;R ⊢ e : τ )

Typing A judgment Γ;R ⊢ p : τ states that the program p has the type τ in the type environment
Γ and the reflection environment R. That is, when the free variables in p are bound to expressions
described by Γ, the program p will evaluate to a value described by τ .
Rules All but two of the rules are the standard refinement typing rules [Knowles and Flanagan
2010; Vazou et al. 2014a] except for the addition of the reflection environment R at each rule. First,
rule T-Refl is used to extend the reflection environment with the binding of the function name
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Typing Γ;R ⊢ p : τ

x : τ ∈ Γ
Γ;R ⊢ x : τ

T-Var
Γ;R ⊢ c : prim(c )

T-Con
Γ;R ⊢ p : τ ′ Γ;R ⊢ τ ′ ⪯ τ

Γ;R ⊢ p : τ
T-Sub

Γ;R ⊢ e : {v : B | er }
Γ;R ⊢ e : {v : B | er ∧v = e}

T-Exact
Γ,x : τx ;R ⊢ e : τ

Γ;R ⊢ λx .e : (x :τx → τ )
T-Fun

Γ;R ⊢ e1 : (x :τx → τ ) Γ;R ⊢ e2 : τx
Γ;R ⊢ e1 e2 : τ

T-App

Γ,x : τx ;R ⊢ bx : τx Γ,x : τx ⊢ τx
Γ,x : τx ;R ⊢ b : τ Γ ⊢ τ

Γ;R ⊢ let rec x : τx = bx in b : τ
T-Let

Γ;R ⊢ e : {v : T | er } Γ ⊢ τ
∀i .prim(Di ) = yj : τj → {v : T | eri } Γ,yj : τj ,x : {v : T | er ∧ eri };R ⊢ ei : τ

Γ;R ⊢ case x = e of {Di yi → ei } : τ
T-Case

Γ;R, f 7→ e ⊢ let rec f : Reflect(τf , e ) = e in p : τ
Γ;R ⊢ reflect f : τf = e in p : τ

T-Refl

Well Formedness Γ ⊢ τ

Γ,v : B; ∅ ⊢ e : Bool⇓

Γ ⊢ {v : B | e}
WF-Base

Γ ⊢ τx Γ,x : τx ⊢ τ
Γ ⊢ x :τx → τ

WF-Fun

Subtyping Γ;R ⊢ τ1 ⪯ τ2

∀θ ∈ [[Γ]].[[θ · {v : B | e1}]] ⊆ [[θ · {v : B | e2}]]
Γ;R ⊢ {v : B | e1} ⪯ {v : B | e2}

⪯-Base-λR

Γ;R ⊢ τ ′x ⪯ τx Γ,x : τ ′x ;R ⊢ τ ⪯ τ ′

Γ;R ⊢ x :τx → τ ⪯ x :τ ′x → τ ′
⪯-Fun

Fig. 7. Typing of λR

with its definition (f 7→ e) and moreover to strengthen the type of each reflected binder with
its definition, as described previously in § 4.4. Second, rule T-Exact strengthens the expression
with a singleton type equating the value and the expression (i.e. reflecting the expression in the
type). This is a generalization of the “selfification” rules from [Knowles and Flanagan 2010; Ou
et al. 2004] and is required to equate the reflected functions with their definitions. For example, the
application fib 1 is typed as {v : Int⇓ | fibP 1 ∧v = fib 1} where the first conjunct comes from
the (reflection-strengthened) output refinement of fib § 2 and the second comes from rule T-Exact.
Well-formedness A judgment Γ ⊢ τ states that the refinement type τ is well-formed in the
environment Γ. Following Vazou et al. [2014a], τ is well-formed if all the refinements in τ are
Bool-typed, provably terminating expressions in Γ.
Subtyping A judgment Γ;R ⊢ τ1 ⪯ τ2 states that the type τ1 is a subtype of τ2 in the environments
Γ and R. Informally, τ1 is a subtype of τ2 if, when the free variables of τ1 and τ2 are bound to
expressions described by Γ, the denotation of τ1 is contained in the denotation of τ2. Subtyping of
basic types reduces to denotational containment checking, shown in rule ⪯-Base-λR . That is, τ1 is
a subtype of τ2 under Γ if for any closing substitution θ in [[Γ]], [[θ · τ1]] is contained in [[θ · τ2]].
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Soundness Following λU [Vazou et al. 2014a], in Vazou et al. [2017] we prove that evaluation
preserves typing and typing implies denotational inclusion.

Theorem 4.1. [Soundness of λR ]

• Denotations If Γ;R ⊢ p : τ then ∀θ ∈ [[Γ]].θ · p ∈ [[θ · τ ]].
• Preservation If ∅; ∅ ⊢ p : τ and p ↪→⋆ w , then ∅; ∅ ⊢ w : τ .

Theorem 4.1 lets us prove that if ϕ is a λR type interpreted as a proposition (using the mapping
of Figure 3) and if there exists a p so that ∅; ∅ ⊢ p : ϕ, the ϕ is valid. For example, in § 2 we verified
that the term fibUp proves n :Nat→ {fib n ≤ fib (n + 1)}. Via soundness of λR , we get that for
each valid input n, the result refinement is valid.

∀n.0 ≤ n ↪→⋆ True⇒ fib n ≤ fib (n + 1) ↪→⋆ True

5 ALGORITHMIC CHECKING: λS

λS is a first order approximation of λR where higher-order features are approximated with un-
interpreted functions and the undecidable type subsumption rule ⪯-Base-λR is replaced with a
decidable one (i.e., ⪯-Base-PLE), yielding an sound and decidable SMT-based algorithmic type
system. Figure 6 summarizes the syntax of λS , the sorted (SMT-) decidable logic of quantifier-free
equality, uninterpreted functions and linear arithmetic (QF-EUFLIA) [Barrett et al. 2010; Nelson
1980]. The terms of λS include integers n, booleans b, variables x , data constructors D (encoded as
constants), fully applied unary ⊕1 and binary ▷◁ operators, and application x p of an uninterpreted
function x . The sorts of λS include built-in integer Int and Bool for representing integers and
booleans. The interpreted functions of λS , e.g. the logical constants = and <, have the function sort
s → s . Other functional values in λR , e.g. reflected λR functions and λ-expressions, are represented
as first-order values with the uninterpreted sort Fun s s . The sort U represents all other values.

5.1 Transforming λR into λS

The judgment Γ ⊢ e ⇝ p states that a λR term e is transformed, under an environment Γ, into a λS
term p. If Γ ⊢ e ⇝ p and Γ is clear from the context we write ⌊e⌋ and ⌈p⌉ to denote the translation
from λR to λS and back. Most of the transformation rules are identity and can be found in [Vazou
et al. 2017]. Here we discuss the non-identity ones.
Embedding Types We embed λR types into λS sorts as:

⌊Int⌋ � Int ⌊T ⌋ � U ⌊{v : B[⇓] | e}⌋ � ⌊B⌋
⌊Bool⌋ � Bool ⌊x :τx → τ ⌋ � Fun ⌊τx ⌋ ⌊τ ⌋

Embedding Constants Elements shared on both λR and λS translate to themselves. These elements
include booleans, integers, variables, binary and unary operators. SMT solvers do not support
currying, and so in λS , all function symbols must be fully applied. Thus, we assume that all
applications to primitive constants and data constructors are fully applied, e.g. by converting source
terms like (+ 1) to (\z → z + 1).
Embedding Functions As λS is first-order, we embed λs using the uninterpreted function lam.

Γ,x : τx ⊢ e ⇝ p Γ; ∅ ⊢ (λx .e ) : (x :τx → τ )

Γ ⊢ λx .e ⇝ lam ⌊τx ⌋
⌊τ ⌋ x p

The term λx .e of type τx → τ is transformed to lamsxs x p of sort Fun sx s , where sx and s are
respectively ⌊τx ⌋ and ⌊τ ⌋, lamsxs is a special uninterpreted function of sort sx → s → Fun sx s , and
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x of sort sx and r of sort s are the embedding of the binder and body, respectively. As lam is an
SMT-function, it does not create a binding for x . Instead, x is renamed to a fresh SMT name.
Embedding Applications We embed applications via defunctionalization [Reynolds 1972] using
the uninterpreted app:

Γ ⊢ e ′ ⇝ p ′ Γ ⊢ e ⇝ p Γ; ∅ ⊢ e : τx → τ

Γ ⊢ e e ′ ⇝ app ⌊τx ⌋
⌊τ ⌋ p p ′

The term e e ′, where e and e ′ have types τx → τ and τx , is transformed to appsxs p p ′ : s where s
and sx are ⌊τ ⌋ and ⌊τx ⌋, the appsxs is a special uninterpreted function of sort Fun sx s → sx → s ,
and p and p ′ are the respective translations of e and e ′.
Embedding Data Types We embed data constructors to a predefined λS constant sD of sort
⌊prim(D)⌋: Γ ⊢ D ⇝ sD . For each datatype, we create reflected measures that check the top-level
constructor and select their individual fields. For example, for lists, we create measures

isNil [] = True isCons (x:xs) = True sel1 (x:xs) = x

isNil (x:xs) = False isCons [] = False sel2 (x:xs) = xs

The above selectors can be modeled precisely in the refinement logic via SMT support for ADTs [Nel-
son 1980]. To generalize, let Di be a data constructor such that prim(Di ) � τi,1 → · · · → τi,n → τ
Then check isDi has the sort Fun ⌊τ ⌋ Bool and select selDi, j has the sort Fun ⌊τ ⌋ ⌊τi, j ⌋.
Embedding Case Expressions We translate case-expressions of λR into nested if terms in λS , by
using the check functions in the guards and the select functions for the binders of each case.

Γ ⊢ e ⇝ p Γ ⊢ ei [yi/selDi x][x/e]⇝ pi

Γ ⊢ case x = e of {Di yi → ei } ⇝ if app isD1 p then p1 else . . . else pn

The above translation yields the reflected definition for append (++) from (§ 2.5).
Semantic Preservation The translation preserves the semantics of the expressions. Informally, if
Γ ⊢ e ⇝ p, then for every substitution θ and every logical model σ that respects the environment Γ
if θ · e ↪→⋆ v then σ |= p = ⌊v⌋.

5.2 Algorithmic Type Checking
We make the type checking from Figure 7 algorithmic by checking subtyping via our novel, SMT-
based Proof by Logical Evaluation(PLE). Next, we formalize how PLE makes checking algorithmic
and in § 6 we describe the PLE procedure in detail.
Verification Conditions Recall that in § 5.1 we defined ⌊·⌋ as the translation from λR to λS .
Informally, the implication or verification condition (VC) ⌊Γ⌋ ⇒ p1 ⇒ p2 is valid only if the set of
values described by p1 is subsumed by the set of values described by p2 under the assumptions of Γ.
Γ is embedded into logic by conjoining the refinements of terminating binders [Vazou et al. 2014a]:

⌊Γ⌋ �
⋃
x ∈Γ

⌊Γ,x⌋ where we embed each binder as ⌊Γ,x⌋ �



⌊e⌋ if Γ(x ) = {x : B⇓ | e}
True otherwise.

Validity Checking Instead of directly using the VCs to check validity of programs, we use
the procedure PLE that strengthens the assumption environment ⌊Γ⌋ with equational properties.
Concretely, given a reflection environment R, type environment Γ, and expression e , the procedure
PLE(⌊R⌋, ⌊Γ⌋, ⌊e⌋) —we will define ⌊R⌋ in § 6.1 — returns true only when the expression e evaluates
to True under the reflection and type environments R and Γ.
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Terms p, t ,b ::= λS if-free predicates from Figure 6
Functions F ::= λx .⟨p ⇒ b⟩

Definitional Environment Ψ ::= ∅ | f 7→ F ,Ψ

Logical Environment Φ ::= ∅ | p,Φ

Fig. 8. Syntax of Predicates, Terms and Reflected Functions

Subtyping via VC Validity Checking We make subtyping, and hence, typing decidable, by
replacing the denotational base subtyping rule ⪯-Base-λR with the conservative, algorithmic
version ⪯-Base-PLE that uses PLE to check the validity of the subtyping.

PLE(⌊R⌋, ⌊Γ,v : {v : B⇓ | e}⌋, ⌊e ′⌋)
Γ;R ⊢PLE {v : B | e} ⪯ {v : B | e ′}

⪯-Base-PLE

This typing rule is sound as functions reflected in R always respect the typing environment Γ
(by construction) and because PLE is sound (Theorem 6.2).

Lemma 5.1. If Γ;R ⊢PLE {v : B | e1} ⪯ {v : B | e2} then Γ;R ⊢ {v : B | e1} ⪯ {v : B | e2}.

Soundness of λS We write Γ;R ⊢PLE e : τ for the judgments that can be derived by the algorithmic
subtyping rule ⪯-Base-λS (instead of ⪯-Base-λR .) Lemma 5.1 implies the soundness of λS .

Theorem 5.2 (Soundness of λS). If Γ;R ⊢PLE e : τ then Γ;R ⊢ e : τ .

6 COMPLETE VERIFICATION: PROOF BY LOGICAL EVALUATION
Next, we formalize our Proof By Logical Evaluation algorithm PLE and show that it is sound (§ 6.1),
that it is complete with respect to equational proofs (§ 6.2), and that it terminates (§ 6.3).

6.1 Algorithm
Figure 8 describes the input environments for PLE. The logical environment Φ contains a set of
hypotheses p, described in Figure 6. The definitional environment Ψ maps function symbols f to
their definitions λx .⟨p ⇒ b⟩, written as λ-abstractions over guarded bodies. Moreover, the body b
and the guard p contain neither λ nor if. These restrictions do not impact expressiveness: λs can
be named and reflected, and if-expressions can be pulled out into top-level guards using DeIf(·),
found in Appendix [Vazou et al. 2017]. A definitional environment Ψ can be constructed from R as

⌊R⌋ � { f 7→ λx .DeIf(⌊e⌋) |( f 7→ λx .e ) ∈ R}

Notation We write f (t ) ≺ Φ if the λS term (app . . . (app f t1) . . . tn ) is a syntactic subterm of
some t ′ ∈ Φ. We abuse notation to write f (t ) ≺ t ′ for f (t ) ≺ {t ′}. We write SmtValid(Φ,p) for SMT
validity of the implication Φ⇒ p.
Instantiation & Unfolding A term q is a (Ψ,Φ)-instance if there exists f (t ) ≺ Φ such that:
• Ψ( f ) ≡ λx .⟨pi ⇒ bi ⟩,
• SmtValid(Φ,pi

[
t/x

]
),

• q ≡ ( f (x ) = bi )
[
t/x

]
.

A set of termsQ is a (Ψ,Φ)-instance if every q ∈ Q is an (Ψ,Φ)-instance. The unfolding of Ψ,Φ is the
(finite) set of all (Ψ,Φ)-instances. Procedure Unfold(Ψ, Φ) shown in Figure 9 computes and returns
the conjunction of Φ and the unfolding of Ψ,Φ. The following properties relate (Ψ,Φ)-instances
to the semantics of λR and SMT validity. Let R[e] denote the evaluation of e under the reflection
environment R, i.e. ∅[e] � e and (R, f :ef )[e] � R[let rec f = ef in e].
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Unfold : (Ψ,Φ) → Φ

Unfold(Ψ, Φ) = Φ ∪
⋃

f (t )≺Φ Instantiate
(
Ψ,Φ, f , t

)
Instantiate

(
Ψ,Φ, f , t

)
=

{
(⌊ f (x )⌋ = bi )

[
t/x

] ��� (pi ⇒ bi ) ∈ d, SmtValid(Φ,pi
[
t/x

]
)
}

where
λx .⟨d⟩ = Ψ( f )

PLE : (Ψ,Φ,p) → Bool

PLE(Ψ,Φ,p) = loop
(
0, Φ ∪ ⋃f (t )≺p Instantiate

(
Ψ,Φ, f , t

))
where
loop (i,Φi )
| SmtValid(Φi ,p) = true

| Φi+1 ⊆ Φi = false

| otherwise = loop (i + 1,Φi+1)
where
Φi+1 = Φ ∪ Unfold(Ψ, Φi )

Fig. 9. Algorithm PLE: Proof by Logical Evaluation

Lemma 6.1. For every Γ |= R, and θ ∈ (|Γ |),

• Sat-Inst If ⌊e⌋ is a (⌊R⌋, ⌊Γ⌋)-instance, then θ · R[e] ↪→⋆ True.
• SMT-Approx If SmtValid(⌊Γ⌋, ⌊e⌋) then θ · R[e] ↪→⋆ True.
• SMT-Inst If q is a (⌊R⌋, ⌊Γ⌋)-instance and SmtValid(⌊Γ⌋ ∪ {q}, ⌊e⌋) then θ · R[e] ↪→⋆ True.

The Algorithm Figure 9 shows our proof search algorithm PLE(Ψ,Φ,p) which takes as input a
set of reflected definitions Ψ, an hypothesis Φ, and a goal p. The PLE procedure recursively unfolds

function application terms by invokingUnfold until either the goal can be proved using the unfolded
instances (in which case the search returns true) or no new instances are generated by the unfolding
(in which case the search returns false).
Soundness First, we prove the soundness of PLE.

Theorem 6.2 (Soundness). If PLE(⌊R⌋, ⌊Γ⌋, ⌊e⌋) then ∀θ ∈ (|Γ |), θ · R[e] ↪→⋆ True.

We prove Theorem 6.2 using the Lemma 6.1 that relates instantiation, SMT validity, and the exact
semantics. Intuitively, PLE is sound as it reasons about a finite set of instances by conservatively

treating all function applications as uninterpreted [Nelson 1980].

6.2 Completeness
Next, we show that our proof search is complete with respect to equational reasoning. We define
a notion of equational proof Ψ,Φ ⊢ t ↠ t ′ and prove that if there exists such a proof, then
PLE(Ψ,Φ, t = t ′) is guaranteed to return true. To prove this theorem, we introduce the notion of
bounded unfolding which corresponds to unfolding definitions n times. We will show that unfolding
preserves congruences, and hence, that an equational proof exists iff the goal can be proved with
some bounded unfolding. Thus, completeness follows by showing that the proof search procedure
computes the limit (i.e. fixpoint) of the bounded unfolding. In § 6.3 we will show that the fixpoint
is computable: there is an unfolding depth at which PLE reaches a fixpoint and hence terminates.
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Ψ,Φ ⊢ t ↠ t
Eq-Refl

Ψ,Φ ⊢ t ↠ t ′′ Φ′ = Unfold(Ψ, Φ ∪ {ν = t ′′}) SmtValid(Φ′,ν = t ′)

Ψ,Φ ⊢ t ↠ t ′
Eq-Trans

Ψ,Φ ⊢ t1 ↠ t ′1 Ψ,Φ ⊢ t2 ↠ t ′2 SmtValid(Φ, t ′1 ▷◁ t
′
2)

Ψ,Φ ⊢ t1 ▷◁ t2
Eq-Proof

Fig. 10. Equational Proofs: rules for equational reasoning

Bounded Unfolding For every Ψ,Φ and 0 ≤ n, the bounded unfolding of depth n is defined by:
Unfold∗ (Ψ,Φ, 0) � Φ
Unfold∗ (Ψ,Φ,n + 1) � Φn ∪ Unfold(Ψ, Φn ) where Φn = Unfold∗ (Ψ,Φ,n)

That is, the unfolding at depth n essentially performs Unfold upto n times. The bounded-unfoldings
yield a monotonically non-decreasing sequence of formulas such that if two consecutive bounded
unfoldings coincide, then all subsequent unfoldings are the same.

Lemma 6.3 (Monotonicity). ∀0 ≤ n. Unfold∗ (Ψ,Φ,n) ⊆ Unfold∗ (Ψ,Φ,n + 1).

Lemma 6.4 (Fixpoint). Let Φi � Unfold∗ (Ψ,Φ, i ). If Φn = Φn+1 then ∀n < m. Φm = Φn .

Uncovering Next we prove that every function application term that is uncovered by unfolding to
depth n is congruent to a term in the n-depth unfolding.

Lemma 6.5 (Uncovering). Let Φn ≡ Unfold∗ (Ψ,Φ ∪ {ν = t },n). If SmtValid(Φn ,ν = t ′) then
for every f (t ′) ≺ t ′ there exists f (t ) ≺ Φn such that SmtValid(Φn , ti = t ′i ).

We prove the above lemma by induction on n where the inductive step uses the following
property of congruence closure, which itself is proved by induction on the structure of t ′:

Lemma 6.6 (Congruence). If SmtValid(Φ ∪ {ν = t },ν = t ′) and ν < Φ, t , t ′ then for every

f (t ′) ≺ t ′ there exists f (t ) ≺ Φ, t such that SmtValid(Φ, ti = t ′i ).

Unfolding Preserves Equational Links Next, we use the uncovering Lemma 6.5 and congruence
to show that every instantiation that is valid after n steps is subsumed by the n + 1 depth unfolding.
That is, we show that every possible link in a possible equational chain can be proved equal to the
source expression via bounded unfolding.

Lemma 6.7 (Link). If SmtValid(Unfold∗ (Ψ,Φ∪{ν = t },n),ν = t ′) then SmtValid(Unfold∗ (Ψ,Φ∪
{ν = t },n + 1),Unfold(Ψ, Φ ∪ {ν = t ′})).

Equational Proof Figure 10 formalizes our rules for equational reasoning. Intuitively, there is
an equational proof that t1 ▷◁ t2 under Ψ,Φ written by the judgment Ψ,Φ ⊢ t1 ▷◁ t2 if by some
sequence of repeated function unfoldings, we can prove that t1 and t2 are respectively equal to t ′1
and t ′2 such that, SmtValid(Φ, t ′1 ▷◁ t

′
2) holds. Our notion of equational proofs adapts the idea of

type level computation used in TT-based proof assistants to the setting of SMT-based reasoning,
via the directional unfolding judgment Ψ,Φ ⊢ t ↠ t ′. In the SMT-realm, the explicit notion of a
normal or canonical form is converted to the implicit notion of the equivalence classes of the SMT
solver’s congruence closure procedure (post-unfolding).
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Completeness of Bounded Unfolding Finally, we use the fact that unfolding preserves equational
links to show that bounded unfolding is complete for equational proofs. That is, we prove by
induction on the structure of the equational proof that whenever there is an equational proof of
t = t ′, there exists some bounded unfolding that suffices to prove the equality.

Lemma 6.8. If Ψ,Φ ⊢ t ↠ t ′ then ∃0 ≤ n. SmtValid(Unfold∗ (Ψ,Φ ∪ {ν = t },n),ν = t ′).

PLE is a Fixpoint of Bounded Unfolding Next, we show that the proof search procedure PLE
computes the least-fixpoint of the bounded unfolding and hence, returns true iff there exists some

unfolding depth n at which the goal can be proved.

Lemma 6.9 (Fixpoint). PLE(Ψ,Φ, t = t ′) iff ∃n. SmtValid(Unfold∗ (Ψ,Φ ∪ {ν = t },n),ν = t ′).

The proof follows by observing that PLE(Ψ,Φ, t = t ′) computes the least-fixpoint of the sequence
Φi � Unfold∗ (Ψ,Φ, i ). Specifically, we can prove by induction on i that at each invocation of
loop (i,Φi ) in Figure 9, Φi is equal to Unfold∗ (Ψ,Φ ∪ {ν = t }, i ), which then yields the result.
Completeness of PLE By combining Lemma 6.9 and Lemma 6.7 we can show that PLE is complete,
i.e. if there is an equational proof that t ▷◁ t ′ under Ψ,Φ, then PLE(Ψ,Φ, t ▷◁ t ′) returns true.

Theorem 6.10 (Completeness). If Ψ,Φ ⊢ t ▷◁ t ′ then PLE(Ψ,Φ, t ▷◁ t ′) = true.

6.3 PLE Terminates
So far, we have shown that our proof search procedure PLE is both sound and complete. Both of
these are easy to achieve simply by enumerating all possible instances and repeatedly querying
the SMT solver. Such a monkeys-with-typewriters approach is rather impractical: it may never
terminate. Fortunately, next, we show that in addition to being sound and complete with respect
to equational proofs, if the hypotheses are transparent, then our proof search procedure always
terminates. Next, we describe transparency and explain intuitively why PLE terminates. We then
develop the formalism needed to prove the termination theorem 6.16.
Transparency An environment Γ is inconsistent if SmtValid(⌊Γ⌋, false). An environment Γ is
inhabited if there exists some θ ∈ (|Γ |). We say Γ is transparent if it is either inhabited or inconsistent.
As an example of a non-transparent Φ0 consider the predicate lenA xs = 1 + lenB xs, where lenA
and lenB are both identical definitions of the list length function. Clearly there is no θ that causes
the above predicate to evaluate to true. At the same time, the SMT solver cannot (using the
decidable, quantifier-free theories) prove a contradiction as that requires induction over xs. Thus,
non-transparent environments are somewhat pathological, and in practice, we only invoke PLE
on transparent environments. Either the environment is inconsistent, e.g. when doing a proof-by-
contradiction, or e.g. when doing a proof-by-case-analysis we can easily find suitable concrete
values via random [Claessen and Hughes 2000] or SMT-guided generation [Seidel et al. 2015].
Challenge: Connect Concrete and Logical Semantics As suggested by its name, the PLE algo-
rithm aims to lift the notion of evaluation or computations into the level of the refinement logic.
Thus, to prove termination, we must connect the two different notions of evaluation, the concrete
(operational) semantics and the logical semantics being used by PLE. This connection is trickier
than appears at first glance. In the concrete realm totality ensures that every reflected function f
will terminate when run on any individual value v . However, in the logical realm, we are working
with infinite sets of values, compactly represented via logical constraints. In other words, the logical
realm can be viewed (informally) as an abstract interpretation, of the concrete semantics. We must
carefully argue that despite the approximation introduced by the logical abstraction, the abstract
interpretation will also terminate.
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Solution: Universal Abstract Interpretation We make this argument in three parts. First, we
formalize how PLE performs computation at the logical level via logical steps and logical traces.
We show (Lemma 6.13) that the logical steps form a so-called universal (or “must” ) abstraction
of the concrete semantics [Clarke et al. 1992; Cousot and Cousot 1977]. Second, we show that
if PLE diverges, it is because it creates a strictly increasing infinite chain, Unfold∗ (Ψ,Φ, 0) ⊂
Unfold∗ (Ψ,Φ, 1) . . . which corresponds to an infinite logical trace. Third, as the logical computation
is universal abstraction we use inhabitation to connect the two realms, i.e. to show that an infinite
logical trace corresponds to an infinite concrete trace. The impossibility of the latter must imply the
impossibility of the former, i.e. PLE terminates. Next, we formalize the above to obtain Theorem 6.16.
Totality A function is total when its evaluation reduces to exactly one value. The totality of R can
and is checked by refinement types (§ 4). Hence, for brevity, in the sequel we will implicitly assume

that R is total under Γ.
Definition 6.11 (Total). Let b ≡ λx .⟨⌊p⌋ ⇒ ⌊e⌋⟩. b is total under Γ and R if forall θ ∈ (|Γ |):
(1) If θ · R[pi ] ↪→⋆ True then ∃v . θ · R[ei ] ↪→⋆ v .
(2) If θ · R[pi ] ↪→⋆ True and θ · Ψ[pj ] ↪→⋆ True, then i = j.
(3) There exists an i so that θ · R[pi ] ↪→⋆ True.
R is total under Γ if every b ∈ ⌊R⌋ is total under Γ and R.

Subterm Evaluation As the reflected functions are total, the Church-Rosser theorem implies that
evaluation order is not important. To prove termination, we require an evaluation strategy, e.g.
CBV, in which if a reflected function’s guard is satisfied, then the evaluation of the corresponding
function body requires evaluating every subterm inside the body. As DeIf(·) hoists if-expressions
out of the body and into the top-level guards, the below fact follows from the properties of CBV:

Lemma 6.12. Letb ≡ λx .⟨⌊p⌋ ⇒ ⌊e⌋⟩, and f ∈ R. For every Γ,R, and θ ∈ (|Γ |), if θ · R[pi ] ↪→⋆ True

and f (⌊e ′⌋) ≺ ⌊ei ⌋ then θ · R[ei ] ↪→⋆ C[f (θ · R[e ′])].

Logical Step A pair f (t ) ⇝ f ′(t ′) is a Ψ,Φ-logical step (abbrev. step) if
• Ψ( f ) ≡ λx .⟨p ⇒ b⟩,
• SmtValid(Φ ∧Q,pi ) for some (Ψ,Φ)-instance Q ,
• f ′(t ′) ≺ bi

[
t/x

]

Steps and Reductions Next, using Lemmas 6.12, 6.1, and the definition of logical steps, we show
that every logical step corresponds to a sequence of steps in the concrete semantics:

Lemma 6.13 (Step-Reductions). If f (⌊e⌋) ⇝ f ′(⌊e ′⌋) is a logical step under ⌊R⌋, ⌊Γ⌋ and

θ ∈ (|Γ |), then f (θ · R[e]) ↪→⋆ C[f (θ · R[e ′])] for some context C .

Logical Trace A sequence f0 (t0), f1 (t1), f2 (t2), . . . is a Ψ,Φ-logical trace (abbrev. trace) if fi (ti ) ⇝
fi+1 (ti+1) is a Ψ,Φ-step, for each i . Our termination proof hinges upon the following key result:
inhabited environments only have finite logical traces. We prove this result by contradiction.
Specifically, we show by Lemma 6.13 that an infinite (⌊R⌋, ⌊Γ⌋)-trace combined with fact that
Γ is inhabited yields at least one infinite concrete trace, which contradicts totality. Hence, all the
(⌊R⌋, ⌊Γ⌋) logical traces must be finite.
Theorem 6.14 (Finite-Trace). If Γ is inhabited then every (⌊R⌋, ⌊Γ⌋)-trace is finite.

Ascending Chains and Traces If unfolding Ψ,Φ yields an infinite chain Φ0 ⊂ . . . ⊂ Φn . . ., then
Ψ,Φ has an infinite logical trace. We construct the trace by selecting, at level i , (i.e. in Φi ), an
application term fi (ti ) that was created by unfolding an application term at level i − 1 (i.e. in Φi−1).
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Benchmark

Common Without PLE Search With PLE Search

Impl (l) Spec (l) Proof (l) Time (s) SMT (q) Proof (l) Time (s) SMT (q)
Arithmetic

Fibonacci 7 10 38 2.74 129 16 1.92 79
Ackermann 20 73 196 5.40 566 119 13.80 846
Class Laws Fig 11
Monoid 33 50 109 4.47 34 33 4.22 209
Functor 48 44 93 4.97 26 14 3.68 68
Applicative 62 110 241 12.00 69 74 10.00 1090
Monad 63 42 122 5.39 49 39 4.89 250
Higher-Order Properties

Logical Properties 0 20 33 2.71 32 33 2.74 32
Fold Universal 10 44 43 2.17 24 14 1.46 48
Functional Correctness

SAT-solver 92 34 0 50.00 50 0 50.00 50
Unification 51 60 85 4.77 195 21 5.64 422
Deterministic Parallelism

Conc. Sets 597 329 339 40.10 339 229 40.70 861
n-body 163 251 101 7.41 61 21 6.27 61
Par. Reducers 30 212 124 6.63 52 25 5.56 52
Total 1176 1279 1524 148.76 1626 638 150.88 4068

Table 1. We report verification Time (in seconds, on a 2.3GHz Intel® Xeon® CPU E5-2699 v3 with 18 physical
cores and 64GiB RAM.), the number of SMT queries and size of Proofs (in lines). The Common columns
show sizes of common Implementations and Specifications . We separately consider proofsWithout and
With PLE Search.

Lemma 6.15 (Ascending Chains). Let Φi � Unfold∗ (Ψ,Φ, i ). If there exists an (infinite) ascend-

ing chain Φ0 ⊂ . . . ⊂ Φn . . . then there exists an (infinite) logical trace f0 (t0), . . . , fn (tn ), . . ..

Logical Evaluation Terminates Finally, we prove that the proof search procedure PLE terminates.
If PLE loops forever, there must be an infinite strictly ascending chain of unfoldings Φi , and hence,
by Lemma 6.15, an infinite logical trace, which, by Theorem 6.14, is impossible.

Theorem 6.16 (Termination). If Γ is transparent then PLE(⌊R⌋, ⌊Γ⌋,p) terminates.

7 EVALUATION
Wehave implemented reflection and PLE in LiqidHaskell [Vazou et al. 2014a]. Table 1 summarizes
our evaluation which aims to determine (1) the kinds of programs and properties that can be verified,
(2) how PLE simplifies writing proofs, and (3) how PLE affects the verification time.
Benchmarks We summarize our benchmarks below, see Appendix (§ I, § J) for details.
• ArithmeticWe proved arithmetic properties for the textbook Fibonacci function (c.f. § 2) and
the 12 properties of the Ackermann function from [Tourlakis 2008].
• Class LawsWe proved the monoid laws for the Peano, Maybe and List data types and the Functor,
Applicative, and Monad laws, summarized in Figure 11, for the Maybe, List and Identity monads.
• Higher Order Properties We used natural deduction to prove textbook logical properties as
in § 3. We combined natural deduction principles with PLE-search to prove universality of
right-folds, as described in [Hutton 1999] and formalized in Agda [Mu et al. 2009].
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• Functional Correctness We proved correctness of a SAT solver and a unification algorithm as
implemented in Zombie [Casinghino et al. 2014]. We proved that the SAT solver takes as input a
formula f and either returns Nothing or an assignment that satisfies f, by reflecting the notion
of satisfaction. Then, we proved that if the unification unify s t of two terms s and t returns a
substitution su, then applying su to s and t yields identical terms. Note that, while the unification
function can itself diverge, and hence, cannot be reflected, our method allows terminating and
diverging functions to soundly coexist.
• Deterministic Parallelism Retrofitting verification onto an existing language with a mature
parallel run-time allows us to create three deterministic parallelism libraries that, for the first time,
verify implicit assumptions about associativity and ordering that are critical for determinism.
First, we proved that the ordering laws hold for keys being inserted into LVar-style concurrent
sets [Kuper et al. 2014]. Second, we used monad-par [Marlow et al. 2011] to implement an n-body
simulation, whose correctness relied upon proving that a triple of Real (implementing) 3-d accel-
eration was a Monoid. Third, we built a DPJ-style [Bocchino et al. 2009] parallel-reducers library
whose correctness relied upon verifying that the reduced arguments form a CommutativeMonoid,
and which was the basis of a parallel array sum. Appendix J includes performance results.

Proof Effort We split the total lines of code of our benchmarks into three categories: Spec
represents the refinement types that encode theorems, lemmas, and function specifications; Impl

represents the rest of the Haskell code that defines executable functions; Proofs represent the sizes
of the Haskell proof terms (i.e. functions returning Prop). Reflection and PLE are optionally enabled
using pragmas; the latter is enabled either for a whole file/module, or per top-level function.
Results The main highlights of our evaluation are the following. (1) Reflection allows for the
specification and verification of a wide variety of important properties of programs. (2) PLE
drastically reduces the proof effort: by a factor of 2 − 5× — shrinking the total lines of proof from
1524 to 638— making it quite modest, about the size of the specifications of the theorems. Since
PLE searches for equational properties, there are some proofs, that rarely occur in practice, that
PLE cannot simplify, e.g. the logical properties from § 3. (3) PLE does not impose a performance
penalty: even though proof search can make an order of magnitude many more SMT queries —
increasing the total SMT queries from 1626 without PLE to 4068 with PLE— most of these queries
are simple and it is typically faster to type-check the compact proofs enabled by PLE than it is to
type-check the 2 − 5× longer explicit proofs written by a human.

8 RELATEDWORK

SMT-Based Verification SMT-solvers have been extensively used to automate program verifi-
cation via Floyd-Hoare logics [Nelson 1980]. Leon introduces an SMT-based algorithm that is
complete for catamorphisms (folds) over ADTs [Suter et al. 2010], and a semi-decision procedure
that is guaranteed to find satisfying assignments (models) for queries over arbitrary recursive func-
tions, if they exist [Suter et al. 2011]. Our work is inspired by Dafny’s Verified Calculations [Leino
and Polikarpova 2016] but differs in (1) our use of reflection instead of axiomatization, (2) our use
of refinements to compose proofs, and (3) our use of PLE to automate reasoning about user-defined
functions. Dafny (and F* [Swamy et al. 2016]) encode user-functions as axioms and use a fixed fuel
to instantiate functions upto some fixed unfolding depth [Amin et al. 2014]. While the fuel-based
approach is incomplete, even for equational or calculational reasoning, it may, although rare in
practice, quickly time out after a fixed, small number of instantiations rather than perform an
exhaustive proof search like PLE. Nevertheless, PLE demonstrates that it is possible to develop
complete and practical algorithms for reasoning about user-defined functions.
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Monoid (for Peano, Maybe, List) Functor (for Maybe, List, Id)
Left Id. mempty x ♢ ≡ x Id. fmap id xs ≡ id xs

Right Id. x ♢ mempty ≡ x Distr. fmap (д ◦ h) xs ≡ (fmap д ◦ fmap h) xs
Assoc (x ♢ y) ♢ z ≡ x ♢ (y ♢ z)

Applicative (for Maybe, List, Id) Monad (for Maybe, List, Id)
Id. pure id ⊛ v ≡ v Left Id. return a ≫= f ≡ f a

Comp. pure (◦) ⊛ u ⊛v ⊛w ≡ u ⊛ (v ⊛w ) Right Id. m ≫= return ≡m
Hom. pure f ⊛ pure x ≡ pure ( f x ) Assoc (m ≫= f ) ≫= д ≡m ≫= (λx → f x ≫= д)
Inter. u ⊛ pure y ≡ pure ($ y) ⊛ u

Ord (for Int, Double, Either, (, )) Commutative Monoid (for Int, Double, (, ))
Refl. x ≤ x Comm. x ♢ y ≡ y ♢ x

Antisym. x ≤ y ∧ y ≤ x =⇒ x ≡ y
Trans. x ≤ y ∧ y ≤ z =⇒ x ≤ z (including Monoid laws)

Total. x ≤ y ∨ y ≤ x

Fig. 11. Summary of Verified Typeclass Laws

Proving Equational Properties Several authors have proposed tools for proving (equational)
properties of (functional) programs. Systems of Sousa andDillig [2016] andAsada et al. [2015] extend
classical safety verification algorithms, respectively based on Floyd-Hoare logic and refinement
types, to the setting of relational or k-safety properties that are assertions over k-traces of a
program. Thus, these methods can automatically prove that certain functions are associative,
commutative etc. but are restricted to first-order properties and are not programmer-extensible.
Zeno [Sonnex et al. 2012] generates proofs by term rewriting and Halo [Vytiniotis et al. 2013] uses
an axiomatic encoding to verify contracts. Both the above are automatic, but unpredictable and not
programmer-extensible, hence, have been limited to far simpler properties than the ones checked
here. HERMIT [Farmer et al. 2015] proves equalities by rewriting the GHC core language, guided
by user specified scripts. Our proofs are Haskell programs, SMT solvers automate reasoning, and,
importantly, we connect the validity of proofs with the semantics of the programs.
Dependent Types in Programming Integration of dependent types into Haskell has been a
long standing goal [Eisenberg and Stolarek 2014] that dates back to Cayenne [Augustsson 1998],
a Haskell-like, fully dependent type language with undecidable type checking. Our approach
differs significantly in that reflection and PLE use SMT-solvers to drastically simplify proofs over
decidable theories. Zombie [Sjöberg and Weirich 2015] investigates the design of a dependently
typed language where SMT-style congruence closure is used to reason about the equality of terms.
However, Zombie explicitly eschews type-level computation as the authors write “equalities that
follow from β-reduction” are “incompatible with congruence closure”. Due to this incompleteness,
the programmer must use explicit join terms to indicate where normalization should be triggered,
even so, equality checking is based on fuel, hence, is incomplete.
Proof Assistants Reflection shows how to retrofit deep specification and verification in the
style of Agda [Norell 2007], Coq [Bertot and Castéran 2004] and Isabelle [Nipkow et al. 2002]
into existing languages via refinement typing and PLE shows how type-level computation can
be made compatible with SMT solvers’ native theory reasoning yielding a powerful new way to
automate proofs (§ 2.5). Mature proof assistants like Agda, Coq, and Isabelle have two clear
advantages over our approach: they emit certificates, so they rely on a small trusted computing
base, and they have decades-worth of tactics, libraries and proof scripts that enable large scale
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proof engineering. Some tactics even enable embedding of SMT-based proof search heuristics, e.g.
Sledgehammer [Blanchette et al. 2011], that is widely used in Isabelle. However, this search does
not have the completeness guarantees of PLE. The issue of extracting checkable certificates from
SMT solvers is well understood [Chen et al. 2010; Necula 1997] and easy to extend to our setting.
However, the question of extending SMT-based verifiers with tactics and scriptable proof search,
and more generally, incorporating interactivity in the style of proof-assistants, perhaps enhanced
by proof-completion hints remains an interesting direction for future work.

9 CONCLUSIONS AND FUTUREWORK
Thus, our results identify a new design for deductive verifiers wherein: (1) via Refinement Reflection,
we can encode natural deduction proofs as SMT-checkable refinement typed programs; (2) via
Proof by Logical Evaluation we can combine the complementary strengths of SMT- (i.e., decision
procedures) and TT- based approaches (i.e., type-level computation) to obtain completeness guar-
antees when verifying properties of user-defined functions. However, the increased automation of
SMT and proof-search can sometimes make it harder for a user to debug failed proofs. In future
work, it would be interesting to investigate how to add interactivity to SMT based verifiers, in the
form of tactics and scripts or algorithms for synthesizing proof hints, and by designing new ways
to explain and fix refinement type errors.
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A PROOF OF MAPFUSIONWITHOUT PLE

map_fusion f g []

= (map f . map g) []

=. map f (map g [])

=. map f []

=. map (f . g) []

** QED

map_fusion f g (C x xs)

= map (f . g) (x : xs)

=. ((f . g) x) : (map (f . g) xs)

=. ((f . g) x) : (((map f) . (map g)) xs)

? map_fusion f g xs

=. ((f . g) x) : (map f (map g xs))

=. (f (g x)) : (map f (map g xs))

=. map f ((g x) : (map g xs))

=. map f ((g x) : (map g xs))

=. map f (map g (x : xs))

=. map f ((map g) (x : xs))

=. ((map f) . (map g)) (x : xs)

** QED

B PROOFS FOR PLE

Proofs for § 6

Proof. (Of lemma 6.5) We prove the result by induction on n.
Case n = 0: Immediate as t ≡ t ′.
Case n = k + 1: Consider any t ′ such that SmtValid(Φk+1,ν = t ′). By definition Φk+1 =

Unfold(Ψ, Φk ), hence SmtValid(Unfold(Ψ, Φk ),v = t ,ν = t ′). Consider any f (t ′) ≺ t ′; Lemma 6.6
completes the proof. □

Proof. (Of lemma 6.6) Proof by induction on the structure of t ′: Case t ′ ≡ x : There are no
subterms, hence immediate. Case t ′ ≡ c: There are no subterms, hence immediate. Case t ′ ≡ f (t ′):
Consider the last link in Φ connecting the equivalence class of ν (and t ) to t ′. Suppose the last link
is a congruence link of the form t = t ′ where t ≡ f (t ) and SmtValid(Φ, t = t ′). Then f (t ) ≺ Φ, t
and we are done. Suppose instead, the last link is an equality link in Φ of the form z = f (t ′). In this
case, f (t ′) ≺ Φ and again, we are done. □

Proof. (Of lemma 6.7)

Let Gk � Unfold∗ (Ψ,Φ,k ). Let us assume that

SmtValid(Unfold∗ (Ψ,Φ,ν = t ,n),ν = t ′) (3)

Consider any instance

q ≡ f (t ′) = bi
[
t ′/x

]
in Unfold(Ψ, Φ ∧ ν = t ′) (4)

By the definition of Unfold, we have

f (t ′) ≺ Φ ∧ ν = t ′ such that SmtValid(Φ,pi
[
t ′/x

]
) (5)
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By (3) and Lemma 6.5 there exists f (t ) ≺ Φn such that
SmtValid(Φn , t = t ′)

As Φ ⊆ Φn and (5), by congruence

SmtValid(Φn ,pi
[
t/x

]
)

Hence, the instance

f (t ) = bi
[
t/x

]
is inΦn+1

That is
SmtValid(Φn+1, t = t ′ ∧ f (t ) = bi [t/x])

And so by congruence closure
SmtValid(Φn+1,q)

As the above holds for every instance, we have
SmtValid(Φn+1,Unfold(Ψ, Φ ∧ ν = t ′))

□

Proof. (Of lemma 6.8) The proof follows by induction on the structure of Ψ,Φ ⊢ t ↠ t ′.
Base Case Eq-Refl: Follows immediately as t ≡ t ′.
Inductive Case Eq-Trans

In this case, there exists t ′′ such that
Ψ,Φ ⊢ t ↠ t ′′ (6)
SmtValid(Unfold(Ψ, Φ ∧ ν = t ′′),ν = t ′) (7)

By the induction hypothesis (6) implies there exists 0 ≤ n such that
SmtValid(Unfold∗ (Ψ,Φ ∧ ν = t ,n),ν = t ′′)

By Lemma 6.7 we have
SmtValid(Unfold∗ (Ψ,Φ,ν = t ,n + 1),Unfold(Ψ, Φ ∧ ν = t ′′))

Thus, by (7) and modus ponens we get
SmtValid(Unfold∗ (Ψ,Φ,ν = t ,n + 1),ν = t ′)

□

Proof. (Of Lemma 6.9) Let Φ′ = Φ ∧ ν = t .
Case⇒: Assume that PLE(Ψ,Φ, t = t ′). That is, at some iteration i we have SmtValid(Φi ,ν = t ′),

i.e. by (6.2) we have SmtValid(Unfold∗ (Ψ,Φ′, i ),ν = t ′).
Case⇐: Pick the smallestn such that SmtValid(Unfold∗ (Ψ,Φ′,n),ν = t ′). Using Lemmas 6.3 and 6.4

we can then show that forall 0 ≤ k < n, we have
Unfold∗ (Ψ,Φ′,k ) ⊂ Unfold∗ (Ψ,Φ′,k + 1)

and
Unfold∗ (Ψ,Φ′,k ) ⊬ ν = t ′

Hence, after n iterations of the recursive loop, PLE(Ψ,Φ, t = t ′), returns true. □
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Steps and Values Next, we show that if f (y) ⇝ t ′ is a logical step under an Γ that is inhabited by
θ then f (y) reduces to a value under θ . The proof follows by observing that if Γ is inhabited by θ ,
and a particular step is possible, then the guard corresponding to that step must also be true under
θ and hence, by totality, the function must reduce to a value under the given store.

Lemma B.1 (Step-Value). If θ ∈ (|Γ |) and f (y) ⇝ t ′ is a ⌊R⌋, ⌊Γ⌋ step then R[θ · f (y)] ↪→⋆ v .

Proof. (Of Lemma B.1)
Assume that θ ∈ (|Γ |) (8)

Let θ ∗ � θ[x 7→ θ · y] (9)

Ψ( f ) � λx .⟨p ⇒ b⟩ (10)
As f (y) ⇝ t ′ is a ⌊R⌋Γ step, for some i , ⌊R⌋-instance Q we have

SmtValid(⌊Γ⌋ ∧Q,pi [y/x])
Hence, by (8) and Lemma 6.1 θ · R[pi [y/x]] ↪→⋆ True (11)

As θ ∗ · pi ≡ θ · pi [y/x] (12)
The fact (11) yields θ ∗ · R[pi ] ↪→⋆ True

By the Totality Assumption 6.11 R[θ ∗ · f (x )] ↪→⋆ v

That is R[θ · f (y)] ↪→⋆ v (13)
(14)
□

Divergence A closed term t diverges under R if there is no v such that R[t] ↪→⋆ v .

Lemma B.2 (Divergence). If ∀0 ≤ i we have R[ti ] ↪→⋆ C[ti+1] then t0 diverges under Ψ.

Proof. (Of Theorem 6.14)
Assume that θ ∈ (|Γ |) (15)

and assume an infinite ⌊R⌋, ⌊Γ⌋ trace: f0 (t0), f1 (t1), . . . (16)
Where additionally t0 ≡ x0 (17)

Define t∗i ≡ θ · fi (ti ) (18)
By Lemma 6.13, for every i ∈ N R[t∗i ] ↪→⋆ Ci [t∗i+1]

Hence, by Lemma B.2 t∗0 diverges under Ψ
i.e., by (17, 18) θ · f0 (x0) diverges under Ψ (19)

But by (15) and Lemma B.1 R[θ · f0 (x0)] ↪→⋆ v contradicting (19)
Hence, assumption (16) cannot hold, i.e. all all the Ψ,Φ symbolic traces must be finite. □

Proof. (Of Theorem 6.16) As Φ is transparent, there are two cases.

Case: Γ is inconsistent.

By definition of inconsistency SmtValid(⌊Γ⌋, false)

Hence SmtValid(⌊Γ⌋,p)

That is PLE(⌊R⌋, ⌊Γ⌋,p) terminates immediately.
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Case: Γ is inhabited.

That is, exists θ s.t. θ ∈ (|Γ |) (20)

Suppose that PLE(⌊R⌋, ⌊Γ⌋,p) does not terminate.

That is, there is an infinitely increasing chain: Φ0 ⊂ . . . ⊂ Φn . . . (21)
By Lemma 6.15 ⌊R⌋, ⌊Γ⌋ has an infinite trace

Which, by (20) contradicts Theorem 6.14. Thus, (21) is impossible, i.e. PLE(⌊R⌋, ⌊Γ⌋,p) terminates.
□

C PROOF OF SECTION: EMBEDDING NATURAL DEDUCTIONWITH REFINEMENT
TYPES

Lemma C.1 (Validity). If there exists e ∈ (|ϕ |) then ϕ is valid.

Proof. We prove the lemma by case analysis in the shape of ϕ.
• ϕ ≡ {p}. Since the set (|{p}|) = {e |p ↪→⋆ True} is not empty, then p ↪→⋆ True.
• ϕ ≡ ϕ1 → ϕ2. By assumption, there exists an expressions f so that ∀ex ∈ (|ϕ1 |), f ex ∈ (|ϕ2 |).
So, if there exists an expression e1 ∈ (|ϕ1 |) that makes ϕ1 valid then f e1 makes ϕ2 valid.
• ϕ ≡ ϕ → False. By assumption, there exists an expressions f so that ∀ex ∈ (|ϕ |), f ex ∈
(|{False}|). So, if there exists an expression e1 ∈ (|ϕ |) that makes ϕ valid then f e1 makes
{False} valid, which is impossible, thus ϕ cannot be valid.
• ϕ ≡ (ϕ1,ϕ2). If there exists a total expression e ∈ (|ϕ |) then e evaluates to (e1, e2).
• ϕ ≡ Either ϕ1 ϕ2. If there exists a total expression e ∈ (|ϕ |) then e evaluates to either Left e ′
or Right e ′.
• ϕ ≡ x : τ → ϕ. By assumption, there exists an expressions f so that ∀ex ∈ (|τ |), f ex ∈
(|ϕ[x/ex ]|). So, if there exists an expression e1 ∈ (|τ |) then f e1 makes ϕ[x/e1] valid.
• ϕ ≡ (x :: τ ,ϕ). By assumption, there exists an expressions p that evaluates to a pair (ex , ey )
so that ex ∈ (|τ |) and ey ∈ (|ϕ[x/ex ]|).

□

Theorem C.2 (Validity). If ∅; ∅ ⊢ e : ϕ then ϕ is valid.

Proof. By direct implication of Lemma C.1 and soundness of λR (Theorem 4.1). □

D REFINEMENT REFLECTION: λR : EXTENDED VERSIONWITH PROOFS
Our first step towards formalizing refinement reflection is a core calculus λR with an undecidable

type system based on denotational semantics. We show how the soundness of the type system
allows us to prove theorems using λR .

D.1 Syntax
Figure 12 summarizes the syntax of λR , which is essentially the calculus λU [Vazou et al. 2014a]
with explicit recursion and a special reflect binding form to denote terms that are reflected into
the refinement logic. In λR refinements r are arbitrary expressions e (hence r ::= e in Figure 12).
This choice allows us to prove preservation and progress, but renders typechecking undecidable. In
§ F we will see how to recover decidability by soundly approximating refinements.
The syntactic elements of λR are layered into primitive constants, values, expressions, binders

and programs.

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: October 2017.



1:33

Operators ⊙ ::= = | <

Constants c ::= ∧ | ! | ⊙ | +,−, . . .
| True | False | 0, 1,−1, . . .

Values w ::= c | λx .e | D w

Expressions e ::= w | x | e e
| case x = e of {D x → e}

Binders b ::= e | let rec x : τ = b in b

Program p ::= b | reflect x : τ = e in p

Basic Types B ::= Int | Bool | T

Refined Types τ ::= {v : B | {} | | }x : τ → τ

Fig. 12. Syntax of λR

Contexts C

C ::= •

| C e | c C | D e C e
| case y = C of {Di x → ei }

Reductions p ↪→ p ′

C[p] ↪→ C[p ′], if p ↪→ p ′

c v ↪→ δ (c,v )
(λx .e ) e ′ ↪→ e [e ′/x]

case y = D j e of {Di xi → ei } ↪→ ej
[
D j e/y

]
[e/xi ]

reflect x : τ = e in p ↪→ p [fix (λx .e )/x]
let rec x : τ = bx in b ↪→ b [fix (λx .bx )/x]

fix p ↪→ p (fix p)

Fig. 13. Operational Semantics of λR

Constants The primitive constants of λR include all the primitive logical operators ⊕, here, the
set {=, <}. Moreover, they include the primitive booleans True, False, integers −1, 0, 1, etc., and
logical operators ∧, ∨, !, etc..
Data Constructors We encode data constructors as special constants. For example the data type
[Int], which represents finite lists of integers, has two data constructors: [] (“nil”) and : (“cons”).
Values & Expressions The values of λR include constants, λ-abstractions λx .e , and fully ap-
plied data constructors D that wrap values. The expressions of λR include values and variables x ,
applications e e , and case expressions.
Binders & Programs A binder b is a series of possibly recursive let definitions, followed by an
expression. A program p is a series of reflect definitions, each of which names a function that
can be reflected into the refinement logic, followed by a binder. The stratification of programs via
binders is required so that arbitrary recursive definitions are allowed but cannot be inserted into
the logic via refinements or reflection. (We can allow non-recursive let binders in e , but omit them
for simplicity.)
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D.2 Operational Semantics
Figure 12 summarizes the small step contextual β-reduction semantics for λR . We write e ↪→j e ′

if there exist e1, . . . , ej such that e is e1, e ′ is ej and ∀i, j, 1 ≤ i < j, we have ei ↪→ ei+1. We write
e ↪→⋆ e ′ if there exists some finite j such that e ↪→j e ′. We define ≈β to be the reflexive, symmetric,
transitive closure of ↪→ .
Constants Application of a constant requires the argument be reduced to a value; in a single
step the expression is reduced to the output of the primitive constant operation. For example,
consider =, the primitive equality operator on integers. We have δ (=,n) � =n where δ (=n ,m)
equals True iffm is the same as n. We assume that the equality operator is defined for all values,
and, for functions, is defined as extensional equality. That is, for all f and f ′ we have ( f = f ′) ↪→
True iff ∀v . f v ≈β f ′ v . We assume source terms only contain implementable equalities over
non-function types; the above only appears in refinements and allows us to state and prove facts
about extensional equality § H.2.

D.3 Types
λR types include basic types, which are refined with predicates, and dependent function types. Basic
types B comprise integers, booleans, and a family of data-types T (representing lists, trees etc..)
For example the data type [Int] represents lists of integers. We refine basic types with predicates
(boolean valued expressions e) to obtain basic refinement types {v : B | e}. Finally, we have dependent
function types x : τx → τ where the input x has the type τx and the output τ may refer to the input
binder x . We write B to abbreviate {v : B | True}, and τx → τ to abbreviate x : τx → τ if x does not
appear in τ . We use r to refer to refinements.
Denotations Each type τ denotes a set of expressions [[τ ]], that are defined via the dynamic
semantics [Knowles and Flanagan 2010]. Let shape(τ ) be the type we get if we erase all refinements
from τ and e : shape(τ ) be the standard typing relation for the typed lambda calculus. Then, we
define the denotation of types as:

[[{x : B | r }]] � {e | e : B, if e ↪→⋆ w then r [x/w] ↪→⋆ True}

[[x : τx → τ ]] � {e | e : shape(τx → τ ),∀ex ∈ [[τx ]]. e ex ∈ [[τ [x/ex ]]]}

Constants For each constant c we define its type prim(c ) such that c ∈ [[prim(c )]]. For example,

prim(3) � {v : Int | v = 3}
prim(+) � x : Int→ y : Int→ {v : Int | v = x + y}
prim(≤) � x : Int→ y : Int→ {v : Bool | v ⇔ x ≤ y}

So, by definition we get the constant typing lemma

Lemma D.1. [Constant Typing] Every constant c ∈ [[prim(c )]].

Thus, if prim(c ) � x : τx → τ , then for every valuew ∈ [[τx ]], we require δ (c,w ) ∈ [[τ [x/w]]].

D.4 Refinement Reflection
The simple, but key idea in our work is to strengthen the output type of functions with a refinement
that reflects the definition of the function in the logic. We do this by treating each reflect-binder:
reflect f : τ = e in p as a let rec-binder: let rec f : Reflect(τ , e ) = e in p during type checking
(rule T-Refl in Figure 7).
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Reflection We write Reflect(τ , e ) for the reflection of term e into the type τ , defined by strength-
ening τ as:

Reflect({v : B | r }, e ) � {v : B | r ∧v = e}
Reflect(x : τx → τ , λy.e ) � x : τx → Reflect(τ , e[y/x])

As an example, recall from § 2 that the reflect fib strengthens the type of fib with the reflected
refinement fibP.
Consequences for Verification Reflection has two consequences for verification. First, the re-
flected refinement is not trusted; it is itself verified (as a valid output type) during type checking.
Second, instead of being tethered to quantifier instantiation heuristics or having to program “trig-
gers” as in Dafny [Leino 2010] or F* [Swamy et al. 2016] the programmer can predictably “unfold”
the definition of the function during a proof simply by “calling” the function, which we have found
to be a very natural way of structuring proofs § 7.

D.5 Refining & Reflecting Data Constructors with Measures
We assume that each data type is equipped with a set ofmeasures which are unary functions whose
(1) domain is the data type, and (2) body is a single case-expression over the datatype [Vazou et al.
2014a]:

measure f : τ = λx .case y = x of {Di z → ei }

For example, len measures the size of an [Int]:

measure len :: [Int] → Nat

len = \x → case x of

[] → 0

(x:xs) → 1 + len xs

Checking and Projection We assume the existence of measures that check the top-level con-
structor, and project their individual fields. In § F.2 we show how to use these measures to reflect
functions over datatypes. For example, for lists, we assume the existence of measures:

isNil [] = True

isNil (x:xs) = False

isCons (x:xs) = True

isCons [] = False

sel1 (x:xs) = x

sel2 (x:xs) = xs

Refining Data Constructors with Measures We use measures to strengthen the types of data
constructors, and we use these strengthened types during construction and destruction (pattern-
matching). Let: (1) D be a data constructor, with unrefined type x : τ → T (2) the i-th measure
definition with domain T is:

measure fi : τ = λx .case y = x of {D z → ei }

Then, the refined type of D is defined:

prim(D) � x : τ → {v : T | ∧i fi v = ei [x/z]}
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Thus, each data constructor’s output type is refined to reflect the definition of each of its measures.
For example, we use the measures len, isNil, isCons, sel1, and sel2 to strengthen the types of []
and : to:

prim([]) � {v : [Int] | r[]}
prim(:) � x : Int→ xs : [Int]→ {v : [Int] | r:}

where the output refinements are
r[] � len v = 0 ∧ isNil v ∧ !isCons v

r: � len v = 1 + len xs ∧ !isNil v ∧ isCons v

∧ sel1 v = x ∧ sel2 v = xs

It is easy to prove that Lemma D.1 holds for data constructors, by construction. For example,
len [] = 0 evaluates to true.

D.6 Typing Rules
Next, we present the type-checking judgments and rules of λR .
Environments and Closing Substitutions A type environment Γ is a sequence of type bindings
x1 : τ1, . . . ,xn : τn . An environment denotes a set of closing substitutions θ which are sequences of
expression bindings: x1 7→ e1, . . . ,xn 7→ en such that:

[[Γ]] � {θ | ∀x : τ ∈ Γ.θ (x ) ∈ [[θ · τ ]]}

Judgments We use environments to define three kinds of rules: Well-formedness, Subtyping,
and Typing [Knowles and Flanagan 2010; Vazou et al. 2014a]. A judgment Γ ⊢ τ states that the
refinement type τ is well-formed in the environment Γ. Intuitively, the type τ is well-formed if
all the refinements in τ are Bool-typed in Γ. A judgment Γ ⊢ τ1 ⪯ τ2 states that the type τ1 is a
subtype of τ2 in the environment Γ. Informally, τ1 is a subtype of τ2 if, when the free variables of τ1
and τ2 are bound tomeasures expressions described by Γ, the denotation of τ1 is contained in the
denotation of τ2. Subtyping of basic types reduces to denotational containment checking. That is,
for any closing substitution θ in the denotation of Γ, for every expression e , if e ∈ [[θ · τ1]] then
e ∈ [[θ · τ2]]. A judgment Γ ⊢ p : τ states that the program p has the type τ in the environment Γ.
That is, when the free variables in p are bound to expressions described by Γ, the program p will
evaluate to a value described by τ .
Rules All but three of the rules are standard [Knowles and Flanagan 2010; Vazou et al. 2014a]. First,
rule T-Refl is used to strengthen the type of each reflected binder with its definition, as described
previously in § D.4. Second, rule T-Exact strengthens the expression with a singleton type equating
the value and the expression (i.e. reflecting the expression in the type). This is a generalization of
the “selfification” rules from [Knowles and Flanagan 2010; Ou et al. 2004], and is required to equate
the reflected functions with their definitions. For example, the application (fib 1) is typed as
{v : Int | fibP v 1 ∧v = fib 1} where the first conjunct comes from the (reflection-strengthened)
output refinement of fib § 2, and the second conjunct comes from rule T-Exact. Finally, rule T-Fix
is used to type the intermediate fix expressions that appear, not in the surface language but as
intermediate terms in the operational semantics.
Soundness Following λU [Vazou et al. 2014a], we can show that evaluation preserves typing and
that typing implies denotational inclusion.

Theorem D.2. [Soundness of λR ]

• Denotations If Γ ⊢ p : τ then ∀θ ∈ [[Γ]].θ · p ∈ [[θ · τ ]].
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Typing Γ ⊢ p : τ

x : τ ∈ Γ
Γ ⊢ x : τ

T-Var
Γ ⊢ c : prim(c )

T-Con

Γ ⊢ p : τ ′ Γ ⊢ τ ′ ⪯ τ

Γ ⊢ p : τ
T-Sub

Γ ⊢ e : {v : B | { |r }}
Γ ⊢ e : {v : B | { |r } ∧v = e}

T-Exact

Γ,x : τx ⊢ e : τ
Γ ⊢ λx .e : x : τx → τ

T-Fun

Γ ⊢ e1 : (x : τx → τ ) Γ ⊢ e2 : τx
Γ ⊢ e1 e2 : τ

T-App

Γ,x : τx ⊢ bx : τx Γ,x : τx ⊢ τx
Γ,x : τx ⊢ b : τ Γ ⊢ τ

Γ ⊢ let rec x : τx = bx in b : τ
T-Let

Γ ⊢ let rec f : Reflect(τf , e ) = e in p : τ
Γ ⊢ reflect f : τf = e in p : τ

T-Refl

Γ ⊢ e : {v : T | er } Γ ⊢ τ
∀i .prim(Di ) = yj : τj → {v : T | eri }
Γ,yj : τj ,x : {v : T | er ∧ eri } ⊢ ei : τ
Γ ⊢ case x = e of {Di yi → ei } : τ

T-Case

Well Formedness Γ ⊢ τ

Γ,v : B ⊢ e : Bool⇓

Γ ⊢ {v : B | e}
WF-Base

Γ ⊢ τx Γ,x : τx ⊢ τ
Γ ⊢ x : τx → τ

WF-Fun

Subtyping Γ ⊢ τ1 ⪯ τ2

Γ′ � Γ,v : {B⇓ |e}
Γ′ ⊢ e ′ ⇝ p ′ SmtValid(⌊Γ′⌋ ⇒ p ′)

Γ ⊢ {v : B | e} ⪯ {v : B | e ′}
⪯-Base-λS

Γ ⊢ τ ′x ⪯ τx Γ,x : τ ′x ⊢ τ ⪯ τ ′

Γ ⊢ x : τx → τ ⪯ x : τ ′x → τ ′
⪯-Fun

Fig. 14. Typing of λR
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• Preservation If ∅ ⊢ p : τ and p ↪→⋆ w then ∅ ⊢ w : τ .

D.7 From Programs & Types to Propositions & Proofs
The denotational soundness Theorem D.2 lets us interpret well typed programs as proofs of
propositions.
“Definitions” A definition d is a sequence of reflected binders:

d ::= • | reflect x : τ = e in d

A definition’s environment Γ(d ) comprises its binders and their reflected types:
Γ(•) � ∅

Γ(reflect f : τ = e in d ) � ( f ,Reflect(τ , e )), Γ(d )

A definition’s substitution θ (d ) maps each binder to its definition:
θ (•) � []

θ (reflect f : τ = e in d ) � [[f /fix f e], θ (d )]

“Propositions” A proposition is a type
x1 : τ1 → . . . → xn : τn → {v : Unit | prop}

For brevity, we abbreviate propositions like the above to x : τ → {prop} and we call prop the
proposition’s refinement. For simplicity we assume that fv(τi ) = ∅.
“Validity”

A proposition x : τ → {prop} is valid under d if
∀w ∈ [[τ ]]. θ (d ) · prop [w/x] ↪→⋆ True

That is, the proposition is valid if its refinement evaluates to True for every (well typed) interpreta-
tion for its parameters x under d .
“Proofs” A binder b proves a proposition τ under d if

∅ ⊢ d[let rec x : τ = b in unit] : Unit
That is, if the binder b has the proposition’s type τ under the definition d’s environment.

Theorem D.3. [Proofs] If b proves τ under d then τ is valid under d .

Proof. As b proves τ under d , we have
∅ ⊢ d[let rec x : τ = b in unit] : Unit (22)

By Theorem D.2 on 22 we get
θ (d ) ∈ [[Γ(d )]] (23)

Furthermore, by the typing rules 22 implies Γ(d ) ⊢ b : τ and hence, via Theorem D.2
∀θ ∈ [[Γ(d )]]. θ · b ∈ [[θ · τ ]] (24)

Together, 23 and 24 imply
θ (d ) · b ∈ [[θ (d ) · τ ]] (25)

By the definition of type denotations, we have
[[θ (d ) · τ ]] � { f | τ is valid under d } (26)
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By 25, the above set is not empty, and hence τ is valid under d . □

Example: Fibonacci is increasing In § 2 we verified that under a definition d that includes fib,
the term fibUp proves

n : Nat→ {fib n ≤ fib (n + 1)}
Thus, by Theorem D.3 we get

∀n.0 ≤ n ↪→⋆ True⇒ fib n ≤ fib (n + 1) ↪→⋆ True

E PROOF OF SOUNDNESS
We prove Theorem 4.1 of § D by reduction to Soundness of λU [Vazou et al. 2014a].

Theorem E.1. [Denotations] If Γ ⊢ p : τ then ∀θ ∈ [[Γ]].θ · p ∈ [[θ · τ ]].

Proof. We use the proof from [Vazou et al. 2014b] and specifically Lemma 4 that is identical to
the statement we need to prove. Since the proof proceeds by induction in the type derivation, we
need to ensure that all the modified rules satisfy the statement.
• T-Exact Assume Γ ⊢ e : {v : B | { |r } ∧ v = e}. By inversion Γ ⊢ e : {v : B | { |r }}(1). By
(1) and IH we get ∀θ ∈ [[Γ]].θ · e ∈ [[θ · {v : B | { |r }}]]. We fix a θ ∈ [[Γ]] We get that if
θ · e ↪→⋆ w , then θ · { |r }[v/w] ↪→⋆ True. By the Definition of = we get that w = w ↪→⋆

True. Since θ · (v = e )[v/w] ↪→⋆ w = w , then θ · ({ |r } ∧v = e )[v/w] ↪→⋆ True. Thus θ ·
e ∈ [[θ · {v : B | { |r } ∧v = e}]] and since this holds for any fixed θ , ∀θ ∈ [[Γ]].θ · e ∈ [[θ ·
{v : B | { |r } ∧v = e}]].
• T-Let Assume Γ ⊢ let rec x : τx = ex in p : τ . By inversion Γ,x : τx ⊢ ex : τx (1), Γ,x : τx ⊢ p :
τ (2), and Γ ⊢ τ (3). By IH ∀θ ∈ [[Γ,x : τx ]].θ · ex ∈ [[θ · τx ]] (1’) ∀θ ∈ [[Γ,x : τx ]].θ · p ∈ [[θ · τ ]]
(2’). By (1’) and by the type of fix ∀θ ∈ [[Γ,x : τx ]].θ · fix x ex ∈ [[θ · τx ]]. By which, (2’) and
(3) ∀θ ∈ [[Γ]].θ · p [fix x ex/x] ∈ [[θ · τ ]].
• T-Refl Assume Γ ⊢ reflect f : τf = e in p : τ . By inversion, Γ ⊢ let rec f : Reflect(τf , e ) =
e in p : τ . By IH, ∀θ ∈ [[Γ]].θ · let rec f : Reflect(τf , e ) = e in p ∈ [[θ ·τ ]]. Since denotations
are closed under evaluation, ∀θ ∈ [[Γ]].θ · reflect f : Reflect(τf , e ) = e in p ∈ [[θ · τ ]].
• T-Fix In Theorem 8.3 from [Vazou et al. 2014b] (and using the textbook proofs from [Rocca
and Paolini 2004]) we proved that for each type τ , fix τ ∈ [[(τ → τ ) → τ ]].

□

Theorem E.2. [Preservation] If ∅ ⊢ p : τ and p ↪→⋆ w then ∅ ⊢ w : τ .

Proof. In [Vazou et al. 2014b] proof proceeds by iterative application of Type Preservation
Lemma 7. Thus, it suffices to ensure Type Preservation in λR , which it true by the following
Lemma. □

Lemma E.3. If ∅ ⊢ p : τ and p ↪→ p ′ then ∅ ⊢ p ′ : τ .

Proof. Since Type Preservation in λU is proved by induction on the type derivation tree, we
need to ensure that all the modified rules satisfy the statement.
• T-Exact Assume ∅ ⊢ p : {v : B | { |r } ∧v = p}. By inversion ∅ ⊢ p : {v : B | { |r }}. By IH we get
∅ ⊢ p ′ : {v : B | { |r }}. By rule T-Exact we get ∅ ⊢ p ′ : {v : B | { |r } ∧v = p ′}. Since subtyping
is closed under evaluation, we get ∅ ⊢ {v : B | { |r } ∧v = p ′} ⪯ {v : B | { |r } ∧v = p}. By rule
T-Sub we get ∅ ⊢ p ′ : {v : B | { |r } ∧v = p}.
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Predicates p ::= p ▷◁ p | ⊕1p
| n | b | x | D | x p
| if p then p else p

Integers n ::= 0,−1, 1, . . .
Booleans b ::= True | False

Bin Operators ▷◁ ::= = | < | ∧ | + | − | . . .

Un Operators ⊕1 ::= ! | . . .

Model σ ::= σ , (x : p) | ∅
Sort Arguments sa ::= Int | Bool | U | Fun sa sa

Sorts s ::= sa → s

Fig. 15. Syntax of λS

• T-Let Assume ∅ ⊢ let rec x : τx = ex in p : τ . By inversion, x : τx ⊢ ex : τx (1), x : τx ⊢ p : τ
(2), and Γ ⊢ τ (3). By rule T-Fix x : τx ⊢ fix x ex : τx (1’). By (1’), (2) and Lemma 6 of [Vazou
et al. 2014b], we get ⊢ p [fix x ex/x] : τ [fix x ex/x]. By (3) τ [fix x ex/x] ≡ τ . Since
p ′ ≡ p [fix x ex/x], we have ∅ ⊢ p ′ : τ .
• T-ReflAssume ∅ ⊢ reflectx :τx = ex inp : τ . By double inversion, withτ ′x ≡ Reflect(τx , ex );
x : τ ′x ⊢ ex : τ ′x (1), x : τ ′x ⊢ p : τ (2), and Γ ⊢ τ (3). By rule T-Fix x : τ ′x ⊢ fix x ex : τ ′x (1’). By
(1’), (2) and Lemma 6 of [Vazou et al. 2014b], we get ⊢ p [fix x ex/x] : τ [fix x ex/x]. By (3)
τ [fix x ex/x] ≡ τ . Since p ′ ≡ p [fix x ex/x], we have ∅ ⊢ p ′ : τ .
• T-Fix This case cannot occur, as fix does not evaluate to any program.

□

F ALGORITHMIC CHECKING λS : EXTENDED VERSION
Next, we describe λS , a conservative approximation of λR where the undecidable type subsumption
rule is replaced with a decidable one, yielding an SMT-based algorithmic type system that enjoys
the same soundness guarantees.

F.1 The SMT logic λS

Syntax: Terms & Sorts Figure 15 summarizes the syntax of λS , the sorted (SMT-) decidable logic
of quantifier-free equality, uninterpreted functions and linear arithmetic (QF-EUFLIA) [Barrett et al.
2010; Nelson 1980]. The terms of λS include integers n, booleans b, variables x , data constructors D
(encoded as constants), fully applied unary ⊕1 and binary ▷◁ operators, and application x p of an
uninterpreted function x . The sorts of λS include built-in integer Int and Bool for representing
integers and booleans. The interpreted functions of λS , e.g. the logical constants = and <, have the
function sort s → s . Other functional values in λR , e.g. reflected λR functions and λ-expressions, are
represented as first-order values with uninterpreted sort Fun s s . The universal sort U represents all
other values.
Semantics: Satisfaction & Validity An assignment σ is a mapping from variables to terms
σ � {x1 7→ p1, . . . ,xn 7→ pn }. We write σ |= p if the assignment σ is a model of p, intuitively if
σ p “is true” [Nelson 1980]. A predicate p is satisfiable if there exists σ |= p. A predicate p is valid if
for all assignments σ |= p.
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Transformation Γ ⊢ e ⇝ p

Γ ⊢ b ⇝ b
− |= B ↪→∗ ool

Γ ⊢ n ⇝ n
− |= I ↪→∗ nt

Γ ⊢ e1 ⇝ p1 Γ ⊢ e2 ⇝ p2

Γ ⊢ e1 ▷◁ e2 ⇝ p1 ▷◁ p2
− |= B ↪→∗ in

Γ ⊢ e ⇝ p

Γ ⊢ ⊕1e ⇝ ⊕1p
− |= U ↪→∗ n

Γ ⊢ x ⇝ x
− |= V ↪→∗ ar

Γ ⊢ c ⇝ sc
− |= O ↪→∗ p

Γ ⊢ D ⇝ sD
− |= D ↪→∗ C

Γ,x : τx ⊢ e ⇝ p Γ ⊢ (λx .e ) : (x : τx → τ )

Γ ⊢ λx .e ⇝ lam(|τx |)
(|τ |) x p

− |= F ↪→∗ un

Γ ⊢ e ′ ⇝ p ′ Γ ⊢ e ⇝ p Γ ⊢ e : τx → τ

Γ ⊢ e e ′ ⇝ app(|τx |)
(|τ |) p p ′

− |= A ↪→∗ pp

Γ ⊢ e ⇝ p Γ ⊢ ei [x/e]⇝ pi

Γ ⊢ case x = e of {True→ e1; False→ e2}
⇝ if p then p1 else p2

− |= I ↪→∗ f

Γ ⊢ e ⇝ p

Γ ⊢ ei [yi/selDi x][x/e]⇝ pi

Γ ⊢ case x = e of {Di yi → ei }
⇝ if app isD1 p then p1 else . . . else pn

− |= C ↪→∗ ase

Fig. 16. Transforming λR terms into λS .

F.2 Transforming λR into λS

The judgment Γ ⊢ e ⇝ p states that a λR term e is transformed, under an environment Γ, into a λS
term p. The transformation rules are summarized in Figure 16.
Embedding Types We embed λR types into λS sorts as:

(|Int|) � Int (|T |) � U
(|Bool|) � Bool (|x : τx → τ |) � Fun (|τx |) (|τ |)

Embedding Constants Elements shared on both λR and λS translate to themselves. These ele-
ments include booleans (− |= B ↪→∗ ool), integers (− |= I ↪→∗ nt), variables (− |= V ↪→∗ ar), binary
(− |= B ↪→∗ in) and unary (− |= U ↪→∗ n) operators. SMT solvers do not support currying, and so
in λS , all function symbols must be fully applied. Thus, we assume that all applications to primitive
constants and data constructors are saturated, i.e. fully applied, e.g. by converting source level terms
like (+ 1) to (\z → z + 1).
Embedding Functions As λS is a first-order logic, we embed λ-abstraction and application us-
ing the uninterpreted functions lam and app. We embed λ-abstractions using lam as shown in
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rule − |= F ↪→∗ un. The term λx .e of type τx → τ is transformed to lamsxs x p of sort Fun sx s ,
where sx and s are respectively (|τx |) and (|τ |), lamsxs is a special uninterpreted function of sort
sx → s → Fun sx s , and x of sort sx and r of sort s are the embedding of the binder and body,
respectively. As lam is just an SMT-function, it does not create a binding for x . Instead, the binder x
is renamed to a fresh name pre-declared in the SMT environment.
Embedding Applications Dually, we embed applications via defunctionalization [Reynolds 1972]
using an uninterpreted apply function app as shown in rule − |= A ↪→∗ pp. The term e e ′, where e
and e ′ have types τx → τ and τx , is transformed to appsxs p p ′ : s where s and sx are respectively
(|τ |) and (|τx |), the appsxs is a special uninterpreted function of sort Fun sx s → sx → s , and p and p ′
are the respective translations of e and e ′.
Embedding Data Types Rule − |= D ↪→∗ C translates each data constructor to a predefined λS

constant sD of sort (|prim(D) |). Let Di be a non-boolean data constructor such that

prim(Di ) � τi,1 → · · · → τi,n → τ

Then the check function isDi has the sort Fun (|τ |) Bool, and the select function selDi, j has the sort
Fun (|τ |) (|τi, j |). Rule − |= C ↪→∗ ase translates case-expressions of λR into nested if terms in λS , by
using the check functions in the guards, and the select functions for the binders of each case. For
example, following the above, the body of the list append function

[] ++ ys = ys

(x:xs) ++ ys = x : (xs ++ ys)

is reflected into the λS refinement:

if isNil xs then ys else sel1 xs : (sel2 xs ++ ys)

We favor selectors to the axiomatic translation of HALO [Vytiniotis et al. 2013] and F* [Swamy
et al. 2016] to avoid universally quantified formulas and the resulting instantiation unpredictability.

F.3 Correctness of Translation
Informally, the translation relation Γ ⊢ e ⇝ p is correct in the sense that if e is a terminating boolean
expression then e reduces to True iff p is SMT-satisfiable by a model that respects β-equivalence.

Definition F.1 (β-Model). A β−model σ β is an extension of a model σ where lam and app satisfy
the axioms of β-equivalence:

∀x y e .lam x e = lam y (e[x/y])
∀x ex e .(app (lam x e ) ex = e[x/ex ]

Semantics Preservation We define the translation of a λR term into λS under the empty environ-
ment as (|e |) � p if ∅ ⊢ e ⇝ p. A lifted substitution θ⊥ is a set of models σ where each “bottom” in
the substitution θ is mapped to an arbitrary logical value of the respective sort [Vazou et al. 2014a].
We connect the semantics of λR and translated λS via the following theorems:

Theorem F.2. If Γ ⊢ e ⇝ p, then for every θ ∈ [[Γ]] and every σ ∈ θ⊥, if θ⊥ · e ↪→⋆ v then σ β |=

p = (|v |).

Corollary F.3. If Γ ⊢ e : Bool, e reduces to a value and Γ ⊢ e ⇝ p, then for every θ ∈ [[Γ]] and
every σ ∈ θ⊥, θ⊥ · e ↪→⋆ True iff σ β |= p.
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Refined Types τ ::= {v : B[⇓] | {} | | }x : τ → τ

Well Formedness Γ ⊢S τ

Γ,v : B ⊢S e : Bool⇓

Γ ⊢S {v : B | e}
WF-Base

Subtyping Γ ⊢S τ ⪯ τ ′

Γ′ � Γ,v : {B⇓ |e} Γ′ ⊢ e ′ ⇝ p ′ SmtValid(⌊Γ′⌋ ⇒ p ′)

Γ ⊢S {v : B | e} ⪯ {v : B | e ′}
⪯-Base-λS

Fig. 17. Algorithmic Typing (other rules in Figs 12 and 14.)

F.4 Decidable Type Checking
Figure 17 summarizes the modifications required to obtain decidable type checking. Namely, basic
types are extended with labels that track termination and subtyping is checked via an SMT solver.
Termination Under arbitrary beta-reduction semantics (which includes lazy evaluation), sound-
ness of refinement type checking requires checking termination, for two reasons: (1) to ensure
that refinements cannot diverge, and (2) to account for the environment during subtyping [Vazou
et al. 2014a]. We use ⇓ to mark provably terminating computations, and extend the rules to use
refinements to ensure that if Γ ⊢S e : {v : B⇓ | r }, then e terminates [Vazou et al. 2014a].
Verification Conditions The verification condition (VC) ⌊Γ⌋ ⇒ p is valid only if the set of values
described by Γ, is subsumed by the set of values described by p. Γ is embedded into logic by
conjoining (the embeddings of) the refinements of provably terminating binders [Vazou et al.
2014a]:

(|Γ |) �
∧
x ∈Γ

(|Γ,x |)

where we embed each binder as

(|Γ,x |) �



p if Γ(x ) = {v : B⇓ | e}, Γ ⊢ e[v/x]⇝ p

True otherwise.

Subtyping via SMT Validity We make subtyping, and hence, typing decidable, by replacing the
denotational base subtyping rule ⪯ -Base-λS with a conservative, algorithmic version that uses an
SMT solver to check the validity of the subtyping VC. We use Corollary F.3 to prove soundness of
subtyping.

Lemma F.4. If Γ ⊢S {v : B | e1} ⪯ {v : B | e2} then Γ ⊢ {v : B | e1} ⪯ {v : B | e2}.

Soundness of λS Lemma F.4 directly implies the soundness of λS .

Theorem F.5 (Soundness of λS). If Γ ⊢S e : τ then Γ ⊢ e : τ .

G SOUNDNESS OF ALGORITHMIC VERIFICATION
In this section we prove soundness of Algorithmic verification, by proving the theorems of § 5 by
referring to the proofs in [Vazou et al. 2014b].
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G.1 Transformation
Definition G.1 (Initial Environment). We define the initial SMT environment ∆0 to include

sc : (|prim(c ) |) ∀c ∈ λR

lamsxs : sx → s → Fun sx s ∀sx , s ∈ λ
S

appsxs : Fun sx s → sx → s ∀sx , s ∈ λ
S

sD : (|prim(D) |) ∀D ∈ λR

isD : (|T → Bool|) ∀D ∈ λR of data type T
selDi : (|T → τi |) ∀D ∈ λR of data type T

and i-th argument τi
xsi : s ∀s ∈ λSand1 ≤ i ≤ Mλ

Where xsi areMλ global names that only appear as lambda arguments.
We modify the − |= F ↪→∗ un rule to ensure that logical abstraction is performed using the

minimum globally defined lambda argument that is not already abstracted. We do so, using the
helper function MaxLam(s,p):

MaxLam(s, lamss ′ x
s
i p) =max(i, MaxLam(s,p))

MaxLam(s, r r ) =max(MaxLam(s,p,p))

MaxLam(s,p1 ▷◁ p2) =max(MaxLam(s,p1,p2))

MaxLam(s, ⊕1p) =MaxLam(s,p)

MaxLam(s, if p then p1 else p2) =max(MaxLam(s,p,p1,p2))

MaxLam(s,p) =0

i = MaxLam((|τx |),p) i < Mλ y = x (|τx |)
i+1

Γ,y : τx ⊢ e[x/y]⇝ p Γ ⊢ (λx .e ) : (x : τx → τ )

Γ ⊢ λx .e ⇝ lam(|τx |)
(|τ |) y p

− |= F ↪→∗ un

Lemma G.2 (Type Transformation). If Γ ⊢ e ⇝ p, and Γ ⊢ e : τ , then ∆0, (|Γ |) ⊢S p:(|τ |).

Proof. We proceed by induction on the translation
• − |= B ↪→∗ ool: Since (|Bool|) = Bool, If Γ ⊢ b : Bool, then ∆0, (|Γ |) ⊢S b:(|Bool|).
• − |= I ↪→∗ nt: Since (|Int|) = Int, If Γ ⊢ n : Int, then ∆0, (|Γ |) ⊢S n:(|Int|).
• − |= U ↪→∗ n: Since Γ ⊢ ! e : τ , then it should be Γ ⊢ e : Bool and τ ≡ Bool. By IH,
∆0, (|Γ |) ⊢S p:(|Bool|), thus ∆0, (|Γ |) ⊢S !p:(|Bool|).
• − |= B ↪→∗ in Assume Γ ⊢ e1 ▷◁ e2 ⇝ p1 ▷◁ p2. By inversion Γ ⊢ e1 ⇝ p1, and Γ ⊢ e2 ⇝ p2.
Since Γ ⊢ e1 ▷◁ e2 : τ , then Γ ⊢ e1 : τ1 and Γ ⊢ e1 : τ2. By IH, ∆0, (|Γ |) ⊢S p1:(|τ1 |) and
∆0, (|Γ |) ⊢S p2:(|τ2 |). We split cases on ▷◁
– If ▷◁≡=, then τ1 = τ2, thus (|τ1 |) = (|τ2 |) and (|τ |) = τ = Bool.
– If ▷◁≡<, then τ1 = τ2 = Int, thus (|τ1 |) = (|τ2 |) = Int and (|τ |) = τ = Bool.
– If ▷◁≡ ∧, then τ1 = τ2 = Bool, thus (|τ1 |) = (|τ2 |) = Bool and (|τ |) = τ = Bool.
– If ▷◁≡ + or ▷◁≡ −, then τ1 = τ2 = Int, thus (|τ1 |) = (|τ2 |) = Int and (|τ |) = τ = Int.
• − |= V ↪→∗ ar: Assume Γ ⊢ x ⇝ x Then Γ ⊢ x : Γ(x ) and ∆0, (|Γ |) ⊢S x :(|Γ |) (x ). But by
definition ((|Γ |)) (x ) = (|Γ(x ) |).
• − |= O ↪→∗ p: Assume Γ ⊢ c ⇝ sc Also, Γ ⊢ c : prim(c ) and ∆0, (|Γ |) ⊢S sc :∆0 (sc ). But by
Definition G.1 ∆0 (sc ) = (|prim(c ) |).
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• − |= D ↪→∗ C : Assume Γ ⊢ D ⇝ sD Also, Γ ⊢ D : prim(D) and ∆0, (|Γ |) ⊢S sD :∆0 (sD ). But by
Definition G.1 ∆0 (sD ) = (|prim(c ) |).
• − |= F ↪→∗ un: Assume Γ ⊢ λx .e ⇝ lam(|τx |)

(|τ |) x (|τx |)
i p. By inversion i ≤ Mλ Γ,x (|τx |)

i : τx ⊢
e[x/x (|τx |)

i ]⇝ p, and Γ ⊢ (λx .e ) : (x : τx → τ ). By the Definition G.1 on lam, xsi and induction,
we get ∆0, (|Γ |) ⊢S lam(|τx |)

(|τ |) x (|τx |)
i p:Fun (|τx |) (|τ |). By the definition of the type embeddings we

have (|x → τxτ |) � Fun (|τx |) (|τ |).
• − |= A ↪→∗ pp: Assume Γ ⊢ e e ′ ⇝ app(|τx |)

(|τ |) p p ′. By inversion, Γ ⊢ e ′ ⇝ p ′, Γ ⊢ e ⇝ p,
Γ ⊢ e : x : τx → τ . By IH and the type of app we get that ∆0, (|Γ |) ⊢S app(|τx |)

(|τ |) p p ′:(|τ |).
• − |= I ↪→∗ f : Assume Γ ⊢ case x = e of {True → e1; False → e2} ⇝ if p then p1 else p2
Since Γ ⊢ case x = e of {True → e1; False → e2} : τ , then Γ ⊢ e : Bool, Γ ⊢ e1 : τ , and
Γ ⊢ e2 : τ . By inversion and IH, ∆0, (|Γ |) ⊢S p:Bool, ∆0, (|Γ |) ⊢S p1:(|τ |), and ∆0, (|Γ |) ⊢S p2:(|τ |).
Thus, ∆0, (|Γ |) ⊢S if p then p1 else p2:(|τ |).
• − |= C ↪→∗ ase: Assume Γ ⊢ casex = e of {Di yi → ei } ⇝ if isD1 p thenp1 else . . . elsepn
and Γ ⊢ case x = e of {Di yi → ei } : τ . By inversion we get Γ ⊢ e ⇝ p and Γ ⊢

ei [yi/selDi x][x/e] ⇝ pi . By IH and the Definition G.1 on the checkers and selectors,
we get ∆0, (|Γ |) ⊢S if isD1 p then p1 else . . . else pn :(|τ |).

□

Theorem G.3. If Γ ⊢ e ⇝ p, then for every substitution θ ∈ [[Γ]] and every model σ ∈ [[θ⊥]], if
θ⊥ · e ↪→⋆ v then σ β |= p = [[v]].

Proof. We proceed using the notion of tracking substitutions from Figure 8 of [Vazou et al.
2014b]. Since θ⊥ · e ↪→⋆ v , there exists a sequence of evaluations via tracked substitutions,

⟨θ⊥1 ; e1⟩ ↪→ . . . ⟨θ⊥i ; ei ⟩ . . . ↪→ ⟨θ⊥n ; en⟩
with θ⊥1 ≡ θ⊥, e1 ≡ e , and en ≡ v . Moreover, each ei+1 is well formed under Γ, thus it has a
translation Γ ⊢ ei+1 ⇝ pi+1. Thus we can iteratively apply Lemma G.5 n − 1 times and since v is a
value the extra variables in θ⊥n are irrelevant, thus we get the required σ β |= p = [[v]]. □

For Boolean expressions we specialize the above to

Corollary G.4. If Γ ⊢ e : Bool↓ and Γ ⊢ e ⇝ p, then for every substitution θ ∈ [[Γ]] and every
model σ ∈ [[θ⊥]], θ⊥ · e ↪→⋆ True ⇐⇒ σ β |= p

Proof. We prove the left and right implication separately:
• ⇒ By direct application of Theorem G.3 for v ≡ True.
• ⇐ Since e is terminating,θ⊥ · e ↪→⋆ v . with eitherv ≡ True orv ≡ False. Assumev ≡ False,
then by Theorem G.3, σ β |= !p, which is a contradiction. Thus, v ≡ True.

□

Lemma G.5 (Eqivalence Preservation). If Γ ⊢ e ⇝ p, then for every substitution θ ∈ [[Γ]]
and every model σ ∈ [[θ⊥]], if ⟨θ⊥; e⟩ ↪→ ⟨θ⊥2 ; e2⟩ and for Γ ⊆ Γ2 so that θ

⊥
2 ∈ [[Γ2]] and σ

β
2 ∈ [[θ⊥2 ]],

Γ2 ⊢ e2 ⇝ p2 then σ
β ∪ (σ

β
2 \ σ

β ) |= p = p2.

Proof. We proceed by case analysis on the derivation ⟨θ⊥; e⟩ ↪→ ⟨θ⊥2 ; e2⟩.
• Assume ⟨θ⊥; e1 e2⟩ ↪→ ⟨θ⊥2 ; e ′1 e2⟩. By inversion ⟨θ⊥; e1⟩ ↪→ ⟨θ⊥2 ; e ′1⟩. Assume Γ ⊢ e1 ⇝ p1,
Γ ⊢ e2 ⇝ p2, Γ2 ⊢ e ′1 ⇝ p ′1. By IH σ β ∪ (σ

β
2 \σ

β ) |= p1 = p
′
1, thus σ β ∪ (σ

β
2 \σ

β ) |= app p1 p2 =
app p ′1 p2.
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• Assume ⟨θ⊥; c e⟩ ↪→ ⟨θ⊥2 ; c e ′⟩. By inversion ⟨θ⊥; e⟩ ↪→ ⟨θ⊥2 ; e ′⟩. Assume Γ ⊢ e ⇝ p, Γ ⊢ e ′ ⇝
p ′. By IH σ β ∪ (σ

β
2 \ σ

β ) |= p = p ′, thus σ β ∪ (σ
β
2 \ σ

β ) |= app c p = app c p ′.
• Assume ⟨θ⊥; case x = e of {Di yi → ei }⟩ ↪→ ⟨θ

⊥
2 ; case x = e ′ of {Di yi → ei }⟩. By inversion

⟨θ⊥; e⟩ ↪→ ⟨θ⊥2 ; e ′⟩. Assume Γ ⊢ e ⇝ p, Γ ⊢ e ′ ⇝ p ′. Γ ⊢ ei [yi/selDi x][x/e] ⇝ pi . By IH
σ β ∪ (σ

β
2 \ σ

β ) |= p = p ′, thus σ β ∪ (σ
β
2 \ σ

β ) |= if isD1 p then p1 else . . . else pn (|τ |)
= if isD1 p

′ then p1 else . . . else pn (|τ |).
• Assume ⟨θ⊥;D ei e ej ⟩ ↪→ ⟨θ

⊥
2 ;D ei e

′ ej ⟩. By inversion ⟨θ⊥; e⟩ ↪→ ⟨θ⊥2 ; e ′⟩. Assume Γ ⊢ e ⇝ p,
Γ ⊢ ei ⇝ pi , Γ ⊢ e ′ ⇝ p ′. By IH σ β∪ (σ

β
2 \σ

β ) |= p = p ′, thus σ β∪ (σ
β
2 \σ

β ) |= app D pi p pj =
app D pi p

′ pj .
• Assume ⟨θ⊥; c w⟩ ↪→ ⟨θ⊥;δ (c,w )⟩. By the definition of the syntax, c w is a fully applied
logical operator, thus σ β ∪ (σ

β
2 \ σ

β ) |= c w = [[δ (c,w )]]
• Assume ⟨θ⊥; (λx .e )ex ⟩ ↪→ ⟨θ⊥; e[x/ex ]⟩. Assume Γ ⊢ e ⇝ p, Γ ⊢ ex ⇝ px . Since σ β is defined
to satisfy the β-reduction axiom, σ β ∪ (σ

β
2 \ σ

β ) |= app (lam x e ) px = p[x/px ].
• Assume ⟨θ⊥; case x = D j e of {Di yi → ei }⟩ ↪→ ⟨θ

⊥; ej [x/D j e][yi/e]⟩. Also, let Γ ⊢ e ⇝ p,
Γ ⊢ ei [x/D j e][yi/ei ]⇝ pi . By the axiomatic behavior of the measure selector isD j p , we get
σ β |= isD j p . Thus, σ βif isD1 p then p1 else . . . else pn = pj .
• Assume ⟨(x , ex )θ⊥;x⟩ ↪→ ⟨(x , e ′x )θ⊥2 ;x⟩. By inversion ⟨θ⊥; ex ⟩ ↪→ ⟨θ⊥2 ; e ′x ⟩. By identity of
equality, (x ,px )σ β ∪ (σ

β
2 \ σ

β ) |= x = x .
• Assume ⟨(y, ey )θ⊥;x⟩ ↪→ ⟨(y, ey )θ⊥2 ; ex ⟩. By inversion ⟨θ⊥;x⟩ ↪→ ⟨θ⊥2 ; ex ⟩. Assume Γ ⊢ ex ⇝
px . By IH σ β ∪ (σ

β
2 \ σ

β ) |= x = px . Thus (y,py )σ β ∪ (σ
β
2 \ σ

β ) |= x = px .
• Assume ⟨(x ,w )θ⊥;x⟩ ↪→ ⟨(x ,w )θ⊥;w⟩. Thus (x , [[w]])σ β |= x = [[w]].
• Assume ⟨(x ,D y)θ⊥;x⟩ ↪→ ⟨(x ,D y)θ⊥;D y⟩. Thus (x , app D y)σ β |= x = app D y.
• Assume ⟨(x ,D e )θ⊥;x⟩ ↪→ ⟨(x ,Dy), (yi , ei )θ

⊥;Dy⟩. Assume Γ ⊢ ei ⇝ pi . Thus (x , app Dy), (yi ,pi )σ
β |=

x = app D y.
□

G.2 Soundness of Approximation
Theorem G.6 (Soundness of Algorithmic). If Γ ⊢S e : τ then Γ ⊢ e : τ .

Proof. To prove soundness it suffices to prove that subtyping is appropriately approximated, as
stated by the following lemma. □

Lemma G.7. If Γ ⊢S {v : B | e1} ⪯ {v : B | e2} then Γ ⊢ {v : B | e1} ⪯ {v : B | e2}.

Proof. By rule ⪯-Base-λS , we need to show that ∀θ ∈ [[Γ]].[[θ · {v : B | e1}]] ⊆ [[θ · {v : B | e2}]].
We fix a θ ∈ [[Γ]]. and get that forall bindings (xi : {v : B↓ | ei }) ∈ Γ, θ · ei [v/xi ] ↪→⋆ True.

Then need to show that for each e , if e ∈ [[θ · {v : B | e1}]], then e ∈ [[θ · {v : B | e2}]].
If e diverges then the statement trivially holds. Assume e ↪→⋆ w . We need to show that if

θ · e1[v/w] ↪→⋆ True then θ · e2[v/w] ↪→⋆ True.
Let θ⊥ the lifted substitution that satisfies the above. Then by Lemma G.4 for each model

σ β ∈ [[θ⊥]], σ β |= pi , and σ β |= q1 for Γ ⊢ ei [v/xi ] ⇝ pi Γ ⊢ ei [v/w] ⇝ qi . Since Γ ⊢S {v : B |
e1} ⪯ {v : B | e2} we get ∧

i

pi ⇒ q1 ⇒ q2

thus σ β |= q2. By Theorem F.3 we get θ · e2[v/w] ↪→⋆ True. □
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H REASONING ABOUT LAMBDAS
Encoding of λ-abstractions and applications via uninterpreted functions, while sound, is imprecise

as it makes it hard to prove theorems that require α- and β-equivalence or extensional equality.
Using the universally quantified α- and β- equivalence axioms would let the type checker accept
more programs, but would render validity, and hence, type checking undecidable. Next, we identify
a middle ground by describing an not provably complete, but sound and decidable approach to
increase the precision of type checking by strengthening the VCs with instances of the α- and
β- equivalence axioms § H.1 and by introducing a combinator for safely asserting extensional
equality § H.2. In the sequel, we omit app when it is clear from the context.

H.1 Equivalence
As soundness relies on satisfiability under a σ β (see Definition F.1), we can safely instantiate the
axioms of α- and β-equivalence on any set of terms of our choosing and still preserve soundness
(Theorem 5.2). That is, instead of checking the validity of a VC p ⇒ q, we check the validity of a
strengthened VC, a ⇒ p ⇒ q, where a is a (finite) conjunction of equivalence instances derived from
p and q, as discussed below.
Representation Invariant The lambda binders, for each SMT sort, are drawn from a pool of
names xi where the index i = 1, 2, . . .. When representing λ terms we enforce a normalization

invariant that for each lambda term lam xi e , the index i is greater than any lambda argument
appearing in e .
α-instances For each syntactic term lam xi e and λ-binder x j such that i < j appearing in the VC,
we generate an α-equivalence instance predicate (or α-instance):

lam xi e = lam x j e[xi/x j ]

The conjunction of α-instances can be more precise than De Bruijn representation, as they let
the SMT solver deduce more equalities via congruence. For example, this VC is needed to prove the
applicative laws for Reader:

d = lam x1 (x x1) ⇒ lam x2 ((lam x1 (x x1)) x2) = lam x1 (d x1)

The α instance lam x1 (d x1) = lam x2 (d x2) derived from the VC’s hypothesis, combined with
congruence immediately yields the VC’s consequence.
β-instances For each syntactic term app (lam x e ) ex , with ex not containing any λ-abstractions,
appearing in the VC, we generate a β-equivalence instance predicate (or β-instance):

app (lam xi e ) ex = e [ex/xi ] , s.t. ex is λ-free

The λ-free restriction is a simple way to enforce that the reduced term e [e ′/xi ] enjoys the repre-
sentation invariant. For example, consider the following VC needed to prove that the bind operator
for lists satisfies the monadic associativity law.

( f x ≫= д) = app (lam y ( f y ≫= д)) x

The right-hand side of the above VC generates a β-instance that corresponds directly to the equality,
allowing the SMT solver to prove the (strengthened) VC.
Normalization The combination of α- and β-instances is often required to discharge proof
obligations. For example, when proving that the bind operator for the Reader monad is associative,
we need to prove the VC:

lam x2 (lam x1 w ) = lam x3 (app (lam x2 (lam x1 w )) w )
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The SMT solver proves the VC via the equalities corresponding to an α and then β-instance:

lam x2 (lam x1 w ) =α lam x3 (lam x1 w ) =β lam x3 (app (lam x2 (lam x1 w )) w )

H.2 Extensionality
Often, we need to prove that two functions are equal, given the definitions of reflected binders.
Consider

reflect id

id x = x

Liqid Haskell accepts the proof that id x = x for all x:
id_x_eq_x :: x:a → {id x = x}

id_x_eq_x = \x → id x =. x ** QED

as “calling” id unfolds its definition, completing the proof. However, consider this η-expanded
variant of the above proposition:

type Id_eq_id = {(\x → id x) = (\y → y)}

Liqid Haskell rejects the proof:
fails :: Id_eq_id

fails = (\x → id x) =. (\y → y) ** QED

The invocation of id unfolds the definition, but the resulting equality refinement {id x = x} is
trapped under the λ-abstraction. That is, the equality is absent from the typing environment at
the top level, where the left-hand side term is compared to \y → y. Note that the above equality
requires the definition of id and hence is outside the scope of purely the α- and β-instances.
An Exensionality Operator To allow function equality via extensionality, we provide the user
with a (family of) function comparison operator(s) that transform an explanation p which is a proof
that f x = g x for every argument x, into a proof that f = g.

=∀ :: f:(a → b) → g:(a → b) → exp:(x:a → {f x = g x}) → {f = g}

Of course, =∀ cannot be implemented; its type is assumed. We can use =∀ to prove Id_eq_id by
providing a suitable explanation:

pf_id_id :: Id_eq_id

pf_id_id = (\y → y) =∀ (\x → id x) ∵ expl ** QED where expl = (\x → id x =. x

** QED)

The explanation is the second argument to ∵ which has the following type that syntactically fires
β-instances:

x:a → {(\x → id x) x = ((\x → x) x}

I IMPLEMENTATION
Refinement reflection and PLE are implemented in Liquid Haskell. The implementation can be
found in the Liquid Haskell GitHub repository, all the benchmarks of § 2 and § 7 are included in
the nople and ple test directories. The benchmarks for deterministic parallelism can be found at
class-laws and detpar-laws.
Next, we describe the file ProofCombinators.hs, the library of proof combinators used by our

benchmarks and discuss known limitations of our implementation.
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I.1 ProofCombinators: The Proof Combinators Library
In this section we present ProofCombinators, a Haskell library used to structure proof terms.
ProofCombinators is inspired by Equational Reasoning Data Types in Adga [Mu et al. 2009],
providing operators to construct proofs for equality and linear arithmetic inHaskell. The constructed
proofs are checked by an SMT-solver via Liquid Types.
Proof terms are defined in ProofCombinators as a type alias for unit, a data type that curries no
run-time information

type Proof = ()

Proof types are refined to express theorems about program functions. For example, the following
Proof type expresses that fib 2 == 1

fib2 :: () → {v:Proof | fib 2 == 1}

We simplify the above type by omitting the irrelevant basic type Proof and variable v

fib2 :: () → { fib 2 == 1 }

ProofCombinators provides primitives to construct proof terms by casting expressions to proofs.
To resemble mathematical proofs, we make this casting post-fix. We write p *** QED to cast p to a
proof term, by defining two operators QED and *** as

data QED = QED

(***) :: a → QED → Proof

_ *** _ = ()

Proof construction. To construct proof terms, ProofCombinators provides a proof constructor ⊙.
for logical operators of the theory of linear arithmetic and equality: {=,,, ≤, <, ≥, >} ∈ ⊙. ⊙. x y

ensures that x ⊙ y holds, and returns x
⊙.:: x:a → y:{a| x ⊙ y} → {v:a| v==x}

⊙. x _ = x

-- for example

==.:: x:a → y:{a| x==y} → {v:a| v==x}

For instance, using ==. we construct a proof, in terms of Haskell code, that fib 2 == 1:
fib2 _

= fib 2

==. fib 1 + fib 0

==. 1

*** QED

Reusing proofs: Proofs as optional arguments. Often, proofs require reusing existing proof
terms. For example, to prove fib 3 == 2 we can reuse the above fib2 proof. We extend the proof
combinators, to receive an optional third argument of Proof type.
⊙.:: x:a → y:a → {x ⊙ y} → {v:a|v==x}

⊙. x _ _ = x

⊙. x y p returns x while the third argument p explicitly proves x ⊙ y.
Optional Arguments. The proof term argument is optional. To implement optional arguments in
Haskell we use the standard technique where for each operator ⊙ we define a type class Opt⊙ that
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takes as input two expressions a and returns a result r, which will be instantiated with either the
result value r:=a or a function form a proof to the result r:=Proof → a.

class Opt⊙ a r where

(⊙.) :: a → a → r

When no explicit proof argument is required, the result type is just an y:a that curries the proof
x ⊙ y

instance Opt⊙ a a where

(⊙.) :: x:a→ y:{a| x ⊙ y}→ {v:a | v==x }

(⊙.) x _ = x

Note that Haskell’s type inference [Sulzmann et al. 2006] requires both type class parameters a
and r to be constrainted at class instance matching time. In most our examples, the result type
parameter r is not constrained at instance matching time, thus due to the Open World Assumption
the matching instance could not be determined. To address the above, we used another common
Haskell trick, of generalizing the instance to type arguments a and b and then constraint a and b to
be equal a~b. This generalization allows the instance to always match and imposed the equality
constraint after matching.

instance (a~b)⇒ Opt⊙ a b where

(⊙.) :: x:a→ y:{x ⊙ y}→ {v:b | v==x }

(⊙.) x _ = x

To explicitly provide a proof argument, the result type r is instantiated to r:= Proof → a. For
the same instance matching restrictions as above, the type is further generalized to return some b

that is constraint to be equal to a.
instance (a~b)⇒ Opt⊙ a (Proof→ b) where

(⊙.) :: x:a→ y:a→ {x ⊙ y}→ {v:b | v==x }

(⊙.) x _ _ = x

As a concrete example, we define the equality operator ==. via the type class OptEq as
class OptEq a r where

(==.):: a → a → r

instance (a~b)⇒ OptEq a b where

(==.)::x:a→ y:{a|x==y}→ {v:b|v==x}

(==.) x _ = x

instance (a~b)⇒ OptEq a (Proof→ b) where

(==.)::x:a→ y:a→ {x==y}→ {v:b|v==x}

(==.) x _ _ = x

Explanation Operator. The “explanation operator” (?), or (∵), is used to better structure the
proofs. (?) is an infix operator with same fixity as (⊙.) that allows for the equivalence x ⊙. y ?

p == (⊙.) x y p

(?) :: (Proof → a) → Proof → a

f ? y = f y

Putting it all together Using the above operators, we prove that fib 3 == 2, reusing the previous
proof of fib 2 == 1, in a Haskell term that resembles mathematical proofs
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fib3 :: () → {fib 3 == 2}

fib3 _

= fib 3

==. fib 2 + fib 1

==. 2 ? fib2 ()

*** QED

Unverified Operators All operators in ProofCombinators, but two are implemented in Haskell
with implementations verified by Liquid Haskell. The ”unsound“ operators are the assume (1). (==?)
that eases proof construction by assuming equalities, to be proven later and (2). (=∀) extentional
proof equality.
Assume Operator (==?) eases proof construction by assuming equalities while the proof is in
process. It is not implemented in that its body is undefined. Thus, if we run proof terms including
assume operator, the proof will merely crash (instead of returning ()). Proofs including the assume
operator are not considered complete, as via assume operator any statement can be proven,
Function Extensional Equality Unlike the assume operator that is undefined and included in
unfinished thus unsound proofs, the functions extensionality is included in valid proofs that assume
function extensionality, an axioms that is assumed, as it cannot be proven by our logic.
To allow function equality via extensionality, we provide the user with a function comparison

operator that for each function f and g it transforms a proof that for every argument x, f x = g x

to a proof on function equality f = g.

(=∀) :: Arg a ⇒ f:(a → b) → g:(a → b)

→ p:(x:a → {f x = g x})

→ {f = g}

The function (=∀) is not implemented in the library: it returns () and its type is assumed. But
soundness of its usage requires the argument type variable a to be constrained by a type class
constraint Arg a, for both operational and type theoretic reasons.
From operational point of view, an implementation of (=∀) would require checking equality

of f x = g x forall arguments x of type a. This equality would hold due to the proof argument p.
The only missing point is a way to enumerate all the argument a, but this could be provided by a
method of the type clas Arg a. Yet, we have not implement (=∀) because we do not know how to
provide such an implementation that can provably satisfy (=∀)’s type.

From type theoretic point of view, the type variable argument a appears only on negative positions.
Liquid type inference is smart enough to infer that since a appears only negative (=∀) cannot use
any a and thus will not call any of its argument arguments f, g, nor the p. Thus, at each call site of
(=∀) the type variable ‘a‘ is instantiated with the refinement type {v:a | false} indicating dead-
code (since as will not be used by the callee.) Refining the argument x:a with false at each call-site
though leads to unsoundness, as each proof argument p is a valid proof under the false assumption.
What Liquid inference cannot predict is our intention to call f, g and p at every possible argument.
This information is capture by the type class constraint Arg a that (as discussed before [Vazou et al.
2013]) states that methods of the type class Arg a may create values of type a, thus, due to lack of
information on the values that are created by the methods of Arg a, a can only be refined with True.
With extensional equality, we can prove that \x → x is equal to \x → id x, by providing an

explicit explanation that if we call both these functions with the same argument x, they return the
same result, for each x.
safe :: Arg a ⇒ a
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→ {(\x → id x) = (\x → x)}

safe _ = (\x → x)

=∀(\x → id x) ∵ (exp ())

exp :: Arg a ⇒ a → x:a

→ {(\x → id x) x = (\x → x) x}

exp _ x = id x

==. x

*** QED

Note that the result of exp is an equality of the redexes (\x → id x) x and ((\x → x) x. Ex-
tentional function equality requires as argument an equality on such redexes. Via β equality
instantiations, both such redexes will automatically reduce, requiring exp to prove id x = x, with
is direct.

Admittedly, proving function equality via extensionality is requires a cumbersome indirect proof.
For each function equality in the main proof one needs to define an explanation function that
proves the equality for every argument.

I.2 Engineering Limitations
The theory of refinement reflection is fully implemented in Liquid Haskell. Yet, to make this
extension usable in real world applications there are four known engineering limitations that need
to be addressed. All these limitations seem straightforward to address and we plan to fix them soon.
The language of refinements is typed lambda calculus. That is the types of the lambda arguments
are explicitly specified instead of being inferred. As another minor limitation, the refinement
language parser requires the argument to be enclosed in parenthesis in applications where the
function is not a variable. Thus the Haskell expression (\x → x) e should be written as (\x:a →
x) (e) in the refinement logic,
Class instances methods can not be reflected. Instead, the methods we want to use in the
theorems/propositions should be defined as Haskell functions. This restriction has two major
implications. Firstly, we can not verify correctness of library provided instances but we need to
redifine them ourselves. Secondly, we cannot really verify class instances with class preconditions.
For example, during verification of monoid associativity of the Maybe instance

instance (Monoid a) ⇒ Monoid (Maybe a)

there is this Monoid a class constraint assumption we needed to raise to proceed verification.
Only user defined data types can currently used in verification. The reason for this limitation is
that reflection of case expressions requires checker and projector measures for each data type used
in reflected functions. Thus, not only should these data types be defined in the verified module, but
also should be be injected in the logic by providing a refined version of the definition that can (or
may not) be trivially refined.
For example, to reflect a function that uses Peano numbers, the Haskell and the refined Peano

definitions should be provided
data Peano = Z | S Peano

{-@ data Peano [toInt]

= Z

| S {prev :: Peano}
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@-}

Note that the termination function toInt that maps Peano numbers to natural numbers is also
crucial for soundness of reflection.
There is no module support. All reflected definitions, including, measures (automatically gen-
erated checkers and selector, but also the classic lifted Haskell functions to measures) and the
reflected types of the reflected functions, are not exposed outside of the module they are defined.
Thus all definitions and propositions should exist in the same module.

J VERIFIED DETERMINISTIC PARALLELISM
Finally, we evaluate our deterministic parallelism prototypes. Aside from the lines of proof code
added, we evaluate the impact on runtime performance. Were we using a proof tool external to
Haskell, this would not be necessary. But our proofs are Haskell programs—they are necessarily
visible to the compiler. In particular, this means a proliferation of unit values and functions returning
unit values. Also, typeclass instances are witnessed at runtime by “dictionary” data structures passed
between functions. Layering proof methods on top of existing classes like Ord could potentially
add indirection or change the code generated, depending on the details of the optimizer. In our
experiments we find little or no effect on runtime performance. Benchmarks were run on a single-
socket Intel® Xeon® CPU E5-2699 v3 with 18 physical cores and 64GiB RAM.

J.1 LVish: Concurrent Sets
First, we use the verifiedInsert operation to observe the runtime slowdown imposed by the extra
proof methods of VerifiedOrd. We benchmark concurrent sets storing 64-bit integers. Figure 18
compares the parallel speedups for a fixed number of parallel insert operations against parallel
verifiedInsert operations, varying the number of concurrent threads. There is a slight observable
difference between the two lines because the extra proof methods do exist at runtime. We repeat
the experiment for two set implementations: a concurrent skiplist (SLSet) and a purely functional
set inside an atomic reference (PureSet) as described in Kuper et al. [2014].

J.2 monad-par: n-body simulation
Next, we verify deterministic behavior of an n-body simulation program that leverages monad-par,
a Haskell library which provides deterministic parallelism for pure code [Marlow et al. 2011].

Each simulated particle is represented by a type Body that stores its position, velocity, and mass.
The function accel computes the relative acceleration between two bodies:

accel :: Body → Body → Accel

where Accel represents the three-dimensional acceleration
data Accel = Accel Real Real Real

To compute the total acceleration of a body b we (1) compute the relative acceleration between b

and each body of the system (Vec Body) and (2) we add each acceleration component. For efficiency,
we use a parallel mapReduce for the above computation that first maps each vector body to get the
acceleration relative to b (accel b) and then adds each Accel value by pointwise addition. mapReduce
is only deterministic if the element is a VerifiedMonoid.

mapReduce :: VerifiedMonoid b ⇒ (a → b) → Vec a → b

To enforce the determinism of an n-body simulation, we need to provide a VerifiedMonoid instance
for Accel. We can prove that (Real, +, 0.0) is a monoid. By product proof composition, we get a
verified monoid instance for
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Fig. 18. Parallel speedup for doing 1 million parallel inserts over 10 iterations, verified and unverified, relative
to the unverified version, for PureSet and SLSet.

type Accel' = (Real, (Real, Real))

which is isomorphic to Accel (i.e. Iso Accel' Accel).
Figure 19 shows the results of running two versions of the n-body simulation with 2,048 bodies

over 5 iterations, with and without verification, using floating point doubles for Real1. Notably,
the two programs have almost identical runtime performance. This demonstrates that even when
verifying code that is run in a tight loop (like accel), we can expect that our programs will not be
slowed down by an unacceptable amount.

J.3 DPJ: Parallel Reducers
The Deterministic Parallel Java (DPJ) project provides a deterministic-by-default semantics for the
Java programming language [Bocchino et al. 2009]. In DPJ, one can declare a method as commutative
and thus assert that racing instances of that method result in a deterministic outcome. For example:

commutative void updateSum(int n) writes R { sum += n; }

But, DPJ provides no means to formally prove commutativity and thus determinism of parallel
reduction. In Liquid Haskell, we specified commutativity as an extra proof method that extends the
VerifiedMonoid class.

class VerifiedMonoid a ⇒ VerifiedCommutativeMonoid a where

commutes :: x:a → y:a → { x <> y = y <> x }

Provably commutative appends can be used to deterministically update a reducer variable, since
the result is the same regardless of the order of appends. We used LVish [Kuper et al. 2014] to
encode a reducer variable with a value a and a region s as RVar s a.

newtype RVar s a

We specify that safe (i.e. deterministic) parallel updates require provably commutative appending.
1Floating point numbers notoriously violate associativity, but we use this approximation because Haskell does net yet have
an implementation of superaccumulators [Collange et al. 2014].
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Fig. 19. Parallel speedup for doing a parallel n-body simulation and parallel array reduction. The speedup is
relative to the unverified version of each respective class of program.

updateRVar :: VerifiedCommutativeMonoid a ⇒ a → RVar s a → Par s ()

Following the DPJ program, we used updateRVar’s provably deterministic interface to compute, in
parallel, the sum of an array with 3x109 elements by updating a single, global reduction variable
using a varying number of threads. Each thread sums segments of an array, sequentially, and
updates the variable with these partial sums. In Figure 19, we compare the verified and unverified
versions of our implementation to observe no appreciable difference in performance.
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