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Abstract
Liquid Haskell is an inductive verifier that cannot reason
about codata. In this work we present two alternative ap-
proaches, namely indexed and constructive coinduction, to
consistently encode coinductive proofs in Liquid Haskell.
The intuition is that indices can be used to enforce the base
case in the setting of classical logic and the guardedness
check in the constructive proofs. We use our encodings to
machine check 10 coinductive proofs, about unary and bi-
nary predicates on infinite streams and lists, showcasing
how an inductive verifier can be used to check coinductive
properties of Haskell code.

CCS Concepts: • Software and its engineering → Soft-
ware verification.
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0 Introduction
Consider a rewrite rule for map-fusion on infinite streams:

data Stream a = a :> Stream a

smap f (x :> xs) = f x :> smap f xs

{-# RULES "smap-fusion" ∀ f g xs.

smap f (smap g xs) = smap (f . g) xs #-}
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This rule will replace the left-hand-side smap f (smap

g xs) with smap (f . g) xs, traversing the infinite stream
only once and optimizing your program. But, canwe formally
prove this rule about Haskell programs?
Formal verification of Haskell programs can be mecha-

nized in numerous tools, including Liquid Haskell [Vazou
et al. 2014], Zeno [Sonnex et al. 2012] and HipSpec [Claessen
et al. 2013]. Yet, most of these tools implement inductive ver-
ification, which is not trustworthy in the presence of infinite
codata. Zeno, for example, only considers finite and total
values, thus it can prove properties that do not hold in the
presence of infinite structures (see §5.1). Even worse, Liquid
Haskell can easily prove false in the presence of an infinite
stream (see §1.3).

These inconsistencies in formal Haskell verifiers exist be-
cause coinduction is not simple. Unlike inductive reasoning
that is well-understood, coinductive reasoning can be mech-
anized using various alternatives. For example, Leino and
Moskal [2014] provide a program transformation approach
that permits coinductive predicates and proofs to be checked
by the inductive and SMT-automated program verifier Dafny.
Abel [2010] uses sized types to explicitly reason about finite
prefixes of potentially infinite values. Coq is one of the few
formal verifiers with a long history of native support for
coinduction [Chlipala 2013; Giménez 1996]. Yet, coinductive
proof development in Coq is not easy: such proofs are not
checked until they are completed, which is too late for Coq’s
interactive proof development.
In this work we present how coinductive proofs can be

encoded and machine checked by an inductive formal veri-
fier without native support for coinduction. The intuition is
that, following the core ideas behind both Leino and Moskal
[2014] and Abel [2010], by adding an extra index on coin-
ductive predicates, the user can prove coinductive properties
by induction on the index. We implement this idea in the
Liquid Haskell inductive verifier using two approaches that
respectively encode classical (à la Leino and Moskal [2014])
and constructive (à la Abel [2010]) logic proofs. Concretely:

• We start, in §1, by an overview of Liquid Haskell where
we present the map fusion property as our “running
example”, we give an inductive proof for finite data and
we discuss why infinite data lead to inconsistencies.
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• In §2, we present the indexed coinduction technique in
which we index the coinductive predicates and encode
coinductive proofs by induction on the index.

• In §3 we present the constructive coinduction technique
that again uses indices to ensure guardedness in con-
structive proofs that are encoded in Liquid Haskell
using refinements over GADTs.

• In §4 we evaluate the two approaches by presenting
our case studies. We prove 10 properties about various
unary and binary predicates on both streams and infi-
nite lists. Based on these case studies, we conclude that
the two techniques are equally verbose (each requires
281 lines of proof code to prove properties about 44
lines of executable Haskell code) and equally expres-
sive (on the domain of computable predicates).

• Finally, in §5, we compare with related approaches.
The contribution of this work is twofold. First, we present
how the user can machine check properties of Haskell code
thatmanipulates infinite data using existing, inductiveHaskell
verifiers. Second, using our examples, we present how an
inductive verifier could be extended to support coinductive
reasoning. These extensions could, in the future, be applied
both in Liquid Haskell and in GHC’s dependent types.

Our code can be found in github.com/lykmast/co-liquid.

1 Liquid Haskell’s Inductive Verification
We start with a short introduction on Liquid Haskell’s induc-
tive verification. We define a (for now inductive) stream data
type (§1.0), which we use to perform “light” (§1.1) and “deep”
(§1.2) verification and explain how these existing, inductive
verification techniques break (i.e., are inconsistent) in the
presence of coinductive data definitions (§1.3).

1.0 Inductive Data
Consider the data type Stream a whose elements are either
empty streams or the products of prepending elements of
type a, using the infix (:>) constructor:

data Stream a = a :> Stream a | E

The standard stream definitions do not contain the empty
case. In this section, we treat Streams as inductively defined,
i.e., they have a base case which is marked in a box that
will be removed in the definitions of the next sections, to
restore the coinductive, standard stream definition.
Using the refinement types of Liquid Haskell, we define

NEStream , the type alias of non empty streams.

type NEStream a = {s:Stream a | notEmpty s}

notEmpty :: Stream a → Bool

notEmpty E = False

notEmpty _ = True

That is, NEStream is the type of streams that are refined to
satisfy the notEmpty predicate.

Note: To use the predicate notEmpty in the refinements, in
the implementation we had to explicitly mark it as a Liquid
Haskell measure , using special comment annotation. Here,
for simplicity, we do not present such annotations; we only
provide the unannotated Liquid Haskell signatures.

1.1 Inductive Light Verification
Liquid Haskell can be used to automate verification about
“light” properties on inductive data. As a first example, we
can prove that map preserves the stream’s length:

smap :: (a → b) → x:Stream a

→ {s:Stream b | slen s == slen x }

smap f E = E

smap f (x :> xs) = f x :> smap f xs

slen :: Stream a -> {i:Int | 0 <= i}

slen E = 0

slen (_ :> xs) = 1 + slen xs

Liquid Haskell will happily verify smap’s length preserva-
tion property. In fact smap’s definition serves as a proof that
the property holds. Concretely, the refinement type check-
ing judgements [Jhala and Vazou 2020] follow the inductive
definition of smap to generate logical verification conditions,
that directly correspond to proof by induction and are auto-
matically discharged by the underlying STM solver.

Of course, this reasoning does not hold for non inductive
data definitions: the length of streams that do not have a
base case cannot be defined. That is why we put the slen

and refinement definitions in box .
Other than functional properties, in the style of length

preservation, Liquid Haskell automatically checks that all
the defined functions are total: terminating and defined for
all cases. For example, the definitions of stream head and
tail accessors will only be valid assuming the non empty
precondition.

shead :: NEStream a → a

shead (x :> _ ) = x

stail :: NEStream a → Stream a

stail (_ :> xs) = xs

With this NEStream precondition, Liquid Haskell has the obli-
gation to ensure non emptiness each time shead or stail

are used. For example, the unsafe function below, generates
a refinement type error, since it calls shead on its (uncon-
strained) argument.

unsafe xs = shead xs -- Refinement Type Error

safe x xs = shead (smap (+1) (x :> xs))

The safe definition, on the other hand, is type safe, since
Liquid Haskell uses the length preservation specification of
smap to ensure that its result is not empty.

https://github.com/lykmast/co-liquid/
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1.2 Inductive Deep Verification
Deep verification, in the setting of refinement types, is the
process of providing explicit proofs to ensure properties
that cannot be automatically proved by the SMT automation.
Usually, such properties refer to the interaction of more than
one function, thus, cannot be proved simply by the function
definition.

We want to prove streammap fusion [Kiselyov et al. 2017],
that is that the "smap-fusion" rule of §0 is correct. We prove
this property using the theorem proving capabilities of Liquid
Haskell [Vazou et al. 2018] that encode theorems as refine-
ment type specifications and proofs as inhabitants to these
types.
Concretely, the signature below encodes that for every

functions f and g and every stream xs, smap f (smap g xs)

equals1 smap (f . g) xs.

mapFusion :: f:(b → c) → g:(a → b)

→ xs:Stream a

→ {smap f (smap g xs) = smap (f . g) xs}

We use the notation {p} to abbreviate the unit type refined
with the predicate p, i.e., {v:()|p}. Thus, mapFusion only
returns a unit value.
To prove mapFusion we construct an inhabitant, i.e., we

provide a definition of mapFusion ’s body accepted by Liquid
Haskell. The definition below follows the structure of smap:
it has two cases and uses an inductive call in the (:>) case.

mapFusion f g E = ()

mapFusion f g (x :> xs)

= smap f (smap g (x :> xs))

=== smap f (g x :> smap g xs)

=== f (g x) :> smap f (smap g xs)

? mapFusion f g xs

=== (f . g) x :> smap (f . g) xs

=== smap (f . g) (x :> xs)

*** QED

The first case is trivial: it is defined to be () and automated by
Liquid Haskell’s rewriting (concretely the PLE tactic [Vazou
et al. 2017]). The inductive case, where the stream is x :> xs

starts by the left-hand side and performs equational steps.
Since mapFusion is actually a Haskell function, equational

reasoning is encoded by calling a set of Haskell operators
that are refined to check equalities between each equational
step. These operators are imported by the Liquid Haskell
library ProofCombinators and summarized in Figure 0. The
operator (===) receives two arguments, checks that they
are equal, and returns the first, to accumulate equational-
style, checked, proof steps. The operator (?) simply ignores

1 In Liquid Haskell, operator = denotes SMT equality (syntactic equality
with the three equality axioms). Haskell users acquainted with GHC RULES
can view Liquid Haskell’s equality as the same equality used in the RULES.

(===) :: x:a → y:{a | x = y} → {v:a | v = x}

x === _ = x

x ? _ = x data QED = QED _ *** QED = ()

Figure 0. Proof Combinators of Liquid Haskell.

the second argument, that in practice provides helper lem-
mas that justify equalities, while the *** QED is defined to
complete the proof, by turning it into a unit.
Back to the proof of mapFusion , we use (===) to expand

the definition of smap twice. Next, we notice that the term
smap f (smap g xs) is equal to smap (f . g) xs by the
inductive hypothesis (here a call to mapFusion f g xs). The
proof concludes by folding the definitions of (.) and smap

to construct the right-hand side of the theorem.
In short, our proof is by induction! Of course, inductive

proofs require a base case to be well formed, which is also
required by Liquid Haskell: If the first line of the mapFusion

definition (i.e., the proof’s base case) is removed, Liquid
Haskell will create a totality error that mapFusion is not
defined for empty streams. But, when streams do not have
the empty case (i.e., when they are coinductive) this error is
not generated. Next, let’s see what could go wrong if all the
boxed code is removed.

1.3 What about Coinduction?
If from the previous example we remove all the boxed
code, Liquid Haskell will happily accept our definitions and
the proof of mapFusion . This behavior is very well aligned
with the partial correctness principle [Flanagan 2006] of
refinement types, which states that “if a program terminates,
then it satisfies its specifications.” Thus, by contraposition,
false can be proved by any diverging program. Sadly, the
runtime semantics is eager, thus infinite streams are seen as
divergent and can easily prove false.
The simplest example that can prove false using infinite

streams is falseStream , by recursing over the stream’s tail:
falseStream :: Stream a → {false}

falseStream (_ :> xs) = falseStream xs

This example makes clear that Liquid Haskell’s theorem
proving capabilities cannot be used to check properties of
coinductive data. For example, the definition below would
constitute a valid inhabitant of mapFusion ’s specification.

mapFusion' xs = falseStream xs

By default, Liquid Haskell does not enforce the construction
of valid, coinductive proofs. Variations of the above can be
used to prove any property, shaking our confidence in Liquid
Haskell itself.

To be fair, in order for Liquid Haskell to accept the defini-
tion of Stream , we had to use the "--no-adt" flag. This flag
tells Liquid Haskell not to map Haskell data types to SMT
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data types, which would reject non-well-founded types. Still,
it would be desirable to prove properties such as mapFusion ,
despite Stream ’s non-well-foundedness.

Next, we encode in Liquid Haskell two ways to construct
proofs of properties on coinductive data that are consistent
(i.e., cannot be used to prove false).

2 Indexed Coinduction
In this section we encode indexed coinduction, which lets us
consistently prove properties about coinductive predicates.
First (§2.0), we index coinductive properties with a natural
number, to eliminate inconsistent proofs. Next (§2.1), we
define indexed predicates that trivially satisfy base cases.
Finally (§2.2), we conclude by noticing that indexed equality
bisimulates stream equality.

2.0 Consistent Approach: Indexed Properties
A first attempt to ensure consistent proofs is to require induc-
tive proofs. To do so, we define the type of indexed properties
IProp p:

type-alias IProp p = k:Nat → { p } / [k]

This type says that to prove IProp p one needs to prove p,
for all natural numbers k, using induction on k. The notation
[k] is used by Liquid Haskell to encode termination metrics,
i.e., expressions that provably decrease at each recursive
function call, and thus prove termination of the function.

Note: Even though Liquid Haskell permits type aliases,
it does not permit them being accompanied by termination
metrics. In our implementation, type-alias annotations are
manually inlined by the user.
Wrapped in IProp , the false predicate cannot be proved

anymore, since in the base case, for k=0, there is not enough
evidence to show false , as no recursive call is allowed.

falseStream :: Stream a → IProp false

falseStream _ 0 = () -- ERROR

falseStream (_ :> xs) i = falseStream xs (i-1)

Yet, this is exactly the case for correct stream properties.
Wrapped in IProp the mapFusion sketches as follows:

mapFusion :: f:(b → c) → g:(a → b) → s:Stream a

→ IProp (smap f (smap g s) = smap (f . g) s)

mapFusion _ _ _ 0 = () -- ERROR

mapFusion f g (_ :> xs) i = ... -- OK

Even though Liquid Haskell can easily verify the inductive
case, there is no way to prove the base case of the, now
correct, theorem.
From this failing first attempt we conclude that the in-

dexed technique can be used only to prove properties that
trivially hold for the base case.

2.1 Precise Approach: Indexed Predicates
Our goal is to define coinductive predicates, indexed with a
natural number k, that trivially hold when k=0. Having set
this goal, we define eqK to be indexed stream equality.

eqK :: Eq a ⇒ Stream a → Stream a → Int → Bool

eqK _ _ 0 = True

eqK (x:>xs) (y:>ys) k = x == y && eqK xs ys (k-1)

Concretely, eqK xs ys k checks if the first k elements of
the streams xs and ys are equal. Indexed equality on k=0 is
trivially true, since the zero first elements of the stream are
always equal. So, indexed equality can be proved via indexed
coinduction.
Next, we encode and prove map-fusion as a coinductive

indexed proposition.

Indexed Coinductive Propositions. We encode coinduc-
tive propositions using the type alias CProp p, that is similar
to IProp except the index k is now further applied to the
indexed property p. (In §4 we discuss how indexed properties
can be derived in general.)

type-alias CProp p = k:Nat → {p k} / [k]

Using CProp , we define the map-fusion property as the
specification of mapFusionIdx that equates all the elements
of the streams smap f (smap g xs) and smap (f . g) xs.

mapFusionIdx :: f:(b → c) → g:(a → b)

→ s:Stream a →

CProp {eqK (smap f (smap g s)) (smap (f . g) s)}

The proof can only go by induction on the index k, as
indicated by the termination metric / [k]. The base case is
easy and goes by unfolding the definition of eqK which is
always true at the index 0.

mapFusionIdx f g xs 0

= eqK (smap f (smap g xs)) (smap (f . g) xs) 0

*** QED

The inductive case also starts easily. Concretely, it starts
by exactly following the equational reasoning steps of the
theorem proved in §1.2:

mapFusionIdx f g (x :> xs) k

= smap f (smap g (x :> xs))

=== smap f (g x :> smap g xs)

=== f (g x) :> smap f (smap g xs)

? mapFusionIdx f g xs (k-1)

=== (f . g) x :> smap (f . g) xs -- ERROR

=== smap (f . g) (x :> xs)

*** QED

However, we are stuck again: Liquid Haskell is not con-
vinced that the inductive call mapFusionIdx f g xs (k-1)

can prove smap f (smap g xs) = smap (f . g) xs. And it
has every right not to be convinced, since the inductive call
provides evidence for the indexed equality eqK, not (=).
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To proceed with the proof, we need to define a new, coin-
ductive proof operator, similar to the (===) of Figure 0, that
will let us: (1) check that the proof step is correct and (2)
conclude that our final proof is correct. We define the proof
combinator (=#=) , which has a precondition that checks and
a postcondition that concludes indexed equalities:

(=#=) :: Eq a

⇒ x:Stream a

→ k:{Nat | 0 < k }

→ y:{Stream a | eqK (stail x) (stail y) (k-1)

&& shead x == shead y}

→ {v:Stream a | eqK x y k && v == x}

That is, (=#=) x k y checks that x and y have equal heads
and indexed equal tails to conclude that they are indexed
equal. Its definition is not assumed, but proved just by ex-
panding the definition of indexed equality. Note, that the
operator returns its first argument, giving us the ability to
chain indexed equality proof steps. Also, note that the order
of the arguments is strange: the index k appears between the
two stream arguments. We chose this order on purpose; we
further define a function application operator (#), similar
to ($) but with the proper precedence, that lets us write
x =#= k # y instead of (=#=) x k y.

f # x = f x

Let us now conclude the proof of mapFusionIdx :

mapFusionIdx f g (x :> xs) k

= smap f (smap g (x :> xs))

=== smap f (g x :> smap g xs)

=== f (g x) :> smap f (smap g xs)

? mapFusionIdx f g xs (k-1)

=#= k #

(f . g) x :> smap (f . g) xs

=== smap (f . g) (x :> xs)

*** QED

This proof is now not only accepted, but it is consistent (as
proof by induction on Nat) and, most importantly, it looks a
lot like the inductive proof.

2.2 Take Lemma: Did we Prove Equality?
Even though our proof looks much like the original induc-
tive proof, the theorem’s statement has diverged. Instead
of proving equality between streams, in §2.1 we prove in-
dexed equality. Here, we explain how these two forms of the
theorem’s statement connect.
Bird and Wadler [1988] formulate and prove the take

lemma, which states that two streams are equal if and only
if their first k “taken” elements are equal, forall k . Namely:

x = y ⇔ ∀k . take k x = take k y

We axiomatize the right-to-left direction of this lemma in
Liquid Haskell as follows:

assume takeLemma :: x:Stream a → y:Stream a

→ (k:Nat → {take k x = take k y})

→ {x = y}

In our mechanization, streams do not have a base case,
thus take converts streams to Haskell’s lists, returning an
empty list on zero:

take :: Nat → Stream a → [a]

take 0 _ = []

take i (x :> xs) = x : take (i-1) xs

By induction on k , we can prove that our indexed equality
predicate behaves like the take equality:

eqKLemma :: x:Stream a → y:Stream a → k:Nat

→ {eqK x y k ⇔ take k x = take k y}

We combine the two lemmas above to derive stream equal-
ity from our indexed equality:

approx :: x:Stream a → y:Stream a

→ CProp {eqK x y} → {x = y}

approx x y p =

takeLemma x y (\k → p k ? eqKLemma x y k)

The proof calls the takeLemma with an argument that com-
bines the eqK x y k premise and eqKLemma , for each k.
By calling approx we are able to replace indexed with

stream equality in our map fusion theorem:

mapFusion :: f:(b → c) → g:(a → b)

→ s:Stream a →

→ {smap f (smap g s) == smap (f . g) s}

mapFusion f g s

= approx (smap f (smap g s))

(smap (f . g) s) (mapFusionIdx f g s)

In short, wemechanized indexed coinduction by (1) defin-
ing a related property indexed by a natural number k and (2)
proving the related property, by induction on k . The benefit
of this technique is that the proof is simple and can use in-
ductive techniques, in the style of equational reasoning. The
great drawback though is that for consistency, the developer
needs to make sure that induction happens on the index and
not on a substream, as sketched below.

thm (x <: xs) i

= ... thm _ (i-1) -- good inductive hypothesis

= ... thm xs _ -- potentially inconsistent!

In all our examples, we used Liquid Haskell’s termination
metrics to ensure inductive calls occur on smaller indices, yet,
in more advanced proofs this requirement could be missed.
Next, we present an alternative mechanization of coinductive
proofs that does not have user-imposed requirements.
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3 Constructive Coinduction
Constructive coinduction is our second mechanization tech-
nique, where proofs are constructed using Haskell’s (refined)
GADTs [Peyton Jones et al. 2006; Xi et al. 2003]. First (§3.0)
we define EqC, the GADT that constructs observational equal-
ity on streams. Next (§3.1), we use EqC to prove our running
theorem. Finally (§3.2), via the take lemma, we prove that
EqC approximates stream equality.

3.0 Constructive Equality
As a first (failing) attempt to define constructive stream
equality, we define Coq’s textbook [Chlipala 2013] coinduc-
tive stream equality, using Liquid Haskell’s data proposi-
tions [Borkowski et al. 2022] and a refined GADT:

data EqC1 a where

EqRefl1 :: x:a → xs:Stream a → ys:Stream a

→ Prop (EqC1 xs ys)

→ Prop (EqC1 (x :> xs) (x :> ys))

The EqC1 data type has one constructor, that given a head x,
two steams, xs and ys, and a proof of the proposition that
xs is equal to ys, constructs a proof of the proposition that
x :> xs is equal to x :> ys.
Liquid Haskell’s built-in Prop type constructor encodes

propositions; given an expression e, it denotes a proposition
that e holds. It is defined as follows:

type Prop e = {v:a | e = prop v}

measure prop :: a → b

where prop is an uninterpreted function in the logic. So, any
expression of type Prop e is a witness that proves e.

The EqC1 data constructor, that is used as an argument to
Prop, is defined below:

data Proposition a = EqC1 (Stream a) (Stream a)

The statement w : Prop (EqC1 xs ys) states that w wit-
nesses that the proposition EqC1 xs ys holds. Since the only
way to construct such a term is via the EqRefl1 construction,
w : Prop (EqC1 xs ys)witnesses observational equality of
xs and ys.

The problem: no guardedness condition. Even though
EqC1 seemingly encodes observational equality, due to the
lack of a base case, as in §1.3, we can trivially prove false.

falseProp :: xs:Stream a → ys:Stream a

→ Prop (EqC1 xs ys) → {false}

falseProp _ _ (EqRefl1 a xs ys p)

= falseProp xs ys p

Remember, that the definition of EqC1 follows Coq’s textbook
stream equality definition. But in Coq, this equality is defined
as CoInductive , which comes with the guardedness condition
check. This check ensures that recursive calls produce values,
i.e., dually to recursive calls of inductive data, recursive calls
on codata should be guarded by data constructors. Such a

condition is not enforced by (Liquid) Haskell and is violated
by the falseProp definition. Thus, our first attempt to define
constructive stream equality is not consistent.

Indices to the rescue. Next, we encode the guardedness
condition using indices, following Agda’s sized types ap-
proach [Abel 2010]. The indexed constructive stream equal-
ity is defined as follows:

data EqC a where

EqRefl :: i:Nat → x:a

→ xs:Stream a → ys:Stream a

→ (j:{Nat | j < i} → Prop (EqC j xs ys))

→ Prop (EqC i (x :> xs) (x :> ys))

data Proposition a = EqC Int (Stream a) (Stream a)

That is, to construct an equality for the index i one can use
the equality on tails for some index j strictly smaller than i.
With this guard, the previous falseProp cannot be encoded:

falseProp :: i:Nat → xs:Stream a → ys:Stream a

→ Prop (EqC i xs ys) → {false}

falseProp 0 _ _ _ = () -- REFINEMENT TYPE ERROR

falseProp i _ _ (EqRefl _ x xs ys p)

= falseProp (i-1) xs ys (p (i-1))

The recursive call is easy: p of type j:{Nat | j < i} →

Prop (EqC j xs ys) can be called with i-1. That call, com-
bined with the requirement that j is a Nat requires that i is
greater than 0. Thus we are left with the i=0 base case, from
which it is impossible to prove false. Unsurprisingly, this
reasoning is similar to §2.0. Indexing permits coinductive
reasoning using inductive verification.

3.1 Proof by Constructive Coinduction
Next, we use constructive coinduction to prove the map
fusion theorem.

mapFusionC :: f:(b → c) → g:(a → b)

→ s:Stream a → i:Nat

→ Prop (EqC i (smap f (smap g s))

(smap (f . g) s))

mapFusionC f g (x :> xs) i =

EqRefl i ((f . g) x) (smap f (smap g xs))

(smap (f . g) xs) (mapFusionC f g xs)

? lhs ? rhs

where

lhs = ((f . g) x) :> (smap f (smap g xs))

=== (f (g x)) :> (smap f (smap g xs))

=== smap f (g x :> smap g xs)

=== smap f (smap g (x :> xs))

*** QED

rhs = ((f . g) x) :> (smap (f . g) xs)

=== smap (f. g) (x :> xs)

*** QED

The only way to construct a term of the required type is by
the data constructor EqRefl . Calling this with the inductive
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hypothesis in the definition of MapFusionC above gives us a
witness that EqC i ((f . g) x :> smap f (smap g xs))

((f . g) x :> smap (f . g) xs). In both sides, we need
to push the head (f . g) x inside the smap and persuade
Liquid Haskell that this push proves the theorem. This is
exactly what ? lhs and ? rhs serve for: they provide the
missing steps using equational reasoning. With this, the
proof completes without any unguarded recursive calls!

3.2 Again, Did we Prove Equality?
Finally, as in §2.2, we use the take lemma to show that con-
structive equality approximates stream equality and use this
approximation in our map fusion theorem.
Concretely, we start by proving that for each index i,

constructive equality between the streams x and y implies
that the i prefixes of the streams are equal.

eqCLemma :: x:Stream a → y:Stream a

→ i:Nat → (Prop (EqC i x y))

→ {take i x = take i y}

eqCLemma _ _ 0 _ = ()

eqCLemma _ _ i (EqRefl _ _ xs ys p)

= eqCLemma xs ys (i-1) (p (i-1))

The proof goes by induction on i: the base case is automati-
cally proved by Liquid Haskell’s PLE and the inductive case
is easy, calling the tail equality p for the previous index.
Note that the proof of eqCLemma requires inverting the

constructive EqC proof. In theory, to prove the lemma given
the EqC i x y witness, we need to know that this equality
was only derived by the tail equality and not via any other
way. That is, if the EqC data type had other constructors, the
proof would have to pattern match on all of them. In practice,
this proof and the requirement of inversion are the reasons
why the definition of EqC had to be a GADT, instead of a
function assumption.
By combining the eqCLemma above with the takeLemma

of §2.2, we prove that constructive equality approximates
stream equality:

approx :: x:Stream a → y:Stream a

→ (i:Nat → Prop (EqC i x y)) → {x = y}

approx x y p

= takeLemma x y (\i → eqKLemma x y i (p i))

Finally, this approximation theorem can be used to convert
constructive to stream equality in our map fusion theorem.

mapFusion :: f:(b → c) → g:(a → b)

→ xs:Stream a

→ {smap f (smap g xs) = smap (f . g) xs}

mapFusion f g xs =

approx (smap f (smap g xs)) (smap (f . g) xs)

(mapFusionC f g xs)

In short, we mechanized constructive coinduction by (1)
encoding the coinductive predicate as an indexed data propo-
sition and (2) proving a coinductive property by constructing
a witness for the coinductive predicate. Consistency of the
constructive proofs relies on the guardedness check, that
we implemented using indices. One way to add native sup-
port for coinductive reasoning in Liquid Haskell would be
to extend it with guardedness checks, like Coq.

4 Evaluation
We used both the indexed (§2) and the constructive (§3)
techniques to prove 10 properties on infinite streams and lists
that involve equality as well as more complicated coinductive
predicates, for example, lexicographic ordering. Here, we
present the properties we proved (§4.0) and use them to
compare the two techniques (§4.1).

4.0 Case Studies
Table 0 summarizes our 10 case studies. Most of our examples
are taken from the literature [Leino and Moskal 2014; Roşu
and Lucanu 2009] and cover a wide variety of properties.

4.0.0 Equal Streams. The first 4 properties prove equal-
ity on streams. Property 0 was detailed in §2 and §3. Us-
ing exactly the same predicates (eqK and EqC) and axiom
(takeLemma ), we prove three more properties:

Property 1: Merge even and odd elements. One very
popular example of a coinductive proof concerns the fol-
lowing functions on streams:

merge :: Stream a → Stream a → Stream a

merge (x :> xs) ys = x :> merge ys xs

evens, odds :: Stream a → Stream a

odds (x :> xs) = x :> odds (stail xs)

evens xs = odds (stail xs)

It is easy to see that, for any stream, merging its odd and
even elements will reconstruct the initial stream. This is
expressed in Liquid Haskell as follows:

mergeEvenOdd :: xs:Stream a

→ {merge (odds xs) (evens xs) = xs}

Properties 2-3: Thue-Morse sequence. These two prop-
erties are inspired by Roşu and Lucanu [2009] and deal with
morse signals, represented as infinite streams of Booleans.
We included them because they are somewhat more complex
proofs since we have to invoke the coinductive hypothesis
at a deeper level, after unfolding the streams twice. The defi-
nition of the properties is shown in Figure 1. First, we define
the stream morse that encodes the Thue-Morse sequence,
i.e., an infinite sequence obtained by starting with False

and successively appending the Boolean complement of the
sequence obtained thus far. Then, we define the function f

that takes as input a stream and replaces each of its values
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Table 0. Quantitative Summary of Coinductive Proofs.

Note: Predicate is the predicate used to express the proved Property. Exec. is the lines of executable Haskell code, i.e.,
functions that return neither unit nor propositions and are shared by the two techniques. Proof is the lines of Haskell function
defined to inhabit proofs. Annot. is the Liquid Haskell annotations.

Indexed Constructive
Property Predicate Exec. Proof Annot. Proof Annot.

St
re
am

s
0. mapFusion equal 2 21 14 21 14
1. mergeEvenOdd equal 6 19 14 17 14
2. morseFix equal 8 44 15 34 14
3. fNotCommute equal 6 41 14 28 13
4. trivialAll trivial 2 13 4 12 10
5. mergeSelfDup dup 3 17 5 16 12
6. squareNNeg nneg 4 13 4 10 11
7. belowSquare below 5 29 13 22 14

Li
st
s 8. mapInfinite infinite 5 15 7 18 11

9. mapFusion equal 3 26 7 25 13
Total 44 214 67 182 99

morse :: Stream Bool

morse = False :> True

:> merge (stail morse) (smap not (stail morse))

f :: Stream Bool → Stream Bool

f xs = shead xs :> not (shead xs) :> f (stail xs)

not True = False

not False = True

-- Morse Property

morseFix :: {f morse = morse}

-- f Property

fNotCommute :: s:Stream Bool

→ {f (smap not s) = smap not (f s)}

Figure 1. Properties 2 and 3 on Morse signals.

x with x, followed by x’s negation. Property 2, morseFix ,
proves that f is the fixpoint of the morse sequence. Property
3, fNotCommute , proves that f and (smap not) commute.

4.0.1 Unary Predicates on Streams. While equality is
the most frequently used predicate, we used our techniques
to prove other copredicates. The next three properties reason
about unary predicates on streams.

Property 4: Trivial streams. The most trivial coinduc-
tive unary predicate on streams, is the one that traverses the
infinite stream and “returns” some Boolean.

trivial :: Stream a → Bool

trivial (x :> xs) = trivial xs

trivialAll :: s:Stream a → {trivial s}

The property we proved is trivialAll and states that all
streams satisfy trivial.

Following the equality proofs, for each new predicate we
introduce we need to define an indexed version, a construc-
tive version, and an axiom that connects the indexed with
the original predicate.

The indexed predicate is defined as below:

trivialK :: Stream a → Nat → Bool

trivialK _ 0 = True

trivialK (x :> xs) k = trivialK xs (k-1)

trivialAllK :: s:_ → k:Nat → {trivialK s k}

Importantly, for k=0 the predicate should be true, while for
bigger ks it simply recurses. We proved, by induction on k,
that trivialK holds for all indices and streams.
For the constructive approach, we defined the Trivial

proposition as follows:

data Trivial a where

TRefl :: i:Nat → x:a → xs:Stream a

→ (j:{Nat | j < i} → Prop (Trivial j xs))

→ Prop (Trivial i (x :> xs))

trivialAllC :: s:_ → i:Nat → Prop (Trivial i s)

The Trivial GADT has one constructor that, like EqC in §3,
for each natural number i and stream x :> xs, returns a
property that x :> xs is trivial on i, given a property that
xs is trivial for all j smaller than i. Using the constructive
technique, we proved in trivialAllC that each stream s has
the trivial property.
To prove trivialAll from either trivialK or trivialC ,

we used an axiom that similar to the take lemma, connects
the indexed with the original predicates:
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assume trivialLemma :: s:Stream a

→ (k:Nat → {trivialK s k})

→ {trivial s}

Using trivialLemma , we reached the trivialAll proof twice.

Property 5: Duplicate streams. The second unary pred-
icate we defined is dup that checks that each stream element
has an equal element next to it. This property was added
because it observes more than one elements of the stream in
each unfolding.
dup (x1 :> x2 :> xs) = x1 == x2 && dup xs

mergeSelfDup :: xs:_ → {dup (merge xs xs)}

We proved, using definitions similar to the trivial predicate,
that merging a stream with itself always satisfies the dup

predicate.

Property 6: Nonnegative streams. Our final unary stream
predicate is nneg and checks that a stream of integers consists
only of non negative numbers:
nneg :: Stream Int → Bool

nneg (x :> xs) = 0 <= x && nneg xs

The property we proved states that the “square” of a stream,
i.e., the result of pointwise multiplication of the stream with
itself, is a non negative stream.
mult :: Stream Int → Stream Int → Stream Int

mult (a :> as) (b :> bs) = a * b :> mult as bs

squareNNeg :: s:_ → {nneg (mult s s)}

This property shows that our techniques can be used to rea-
son about streams of non polymorphic values, here integers.

4.0.2 Binary Predicates: Lexicographic Ordering. In
order to challenge the expressiveness of our techniques, we
used them to check lexicographic comparison for streams.
The original predicate below x y is true only when x is lexi-
cographically below y:
below :: Ord a ⇒ Stream a → Stream a → Bool

below (x :> xs) (y :> ys) =

x <= y && (x == y `implies` below xs ys)

where implies x y = not x || y

The indexed version of below is quite straightforward, it
simply guards the recursive call:
belowK :: Ord a ⇒ Stream a → Stream a → Nat → Bool

belowK k (x :> xs) (y :> ys) =

x <= y && (x == y `implies` belowK (k-1) xs ys)

The constructive version of below is more interesting. In
order to avoid reasoning about constructive Booleans (since
below is using conjunction and implication) we interpreted
below using two different cases:
data BelowC a where

Bel0 :: Ord a

⇒ i:Nat → x:a → xs:Stream a → ys:Stream a

→ ({j:Nat | j < i} → Prop (BelowC j xs ys))

→ Prop (BelowC i (x :> xs) (x :> ys))

Bel1 :: Ord a

⇒ i:Nat → x:a → {y:a| x < y}

→ xs:Stream a → ys:Stream a

→ Prop (BelowC i (x :> xs) (y :> ys))

The first case Bel0 compares streams of same heads and
requires that the tail of the first is below the tail of the second.
The second case Bel1 decides below , simply by looking at
the heads. We can show that the constructive and original
predicates indeed encode the same predicate.

Property 7: Below square. We used the two encodings
of below to prove our final property on streams: each stream
is always below its “square”:

belowSquare :: s:Stream Int → {below s (mult s s)}

4.0.3 Coinduction on Lists. Haskell’s lists are also often
treated as codata (e.g., Prelude’s notable repeat returns an
infinite list). We used our two approaches to prove two coin-
ductive properties on lists.

Because Liquid Haskell comes with various inductive pred-
icates on built-in Haskell’s lists, we did not use Haskell’s
lists but defined our own data type:

data L a = a :| L a | Nil

We defined two coinductive predicates on this list, a unary
which ensures infinity and a binary which checks equality.

Property 8: Map infinite lists. The check of infinity is
the most interesting property on lists, coming from streams,
since it relies on returning False in the base case:

infinite :: L a → Bool

infinite (_ :| xs) = infinite xs

infinite Nil = False

We used the infinite predicate to ensure than map pre-
serves infinity:

mapInfinite :: f:(a → b) → xs:{L a | infinite xs}

→ {infinite (map f xs)}

map :: (a → b) → L a → L b

map _ Nil = Nil

map f (x :| xs) = f x :| map f xs

The proving techniques remain the same on lists: we de-
fined the indexed and constructive predicates and an axiom
that reconstructs the original predicate.

The indexed infinite predicate is defined as follows:

infiniteK :: L a → Nat → Bool

infiniteK _ 0 = True

infiniteK Nil _ = False

infiniteK (_ :| xs) k = infiniteK xs (k-1)
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As with streams, the k=0 case should be True. Note that with
lists, unary predicates have one more case, for Nil. Because
of this, our proofs, that usually follow the structure of the
predicates, also have one extra case, which is usually trivial.

The constructive predicate has only one case:
data InfiniteC a where

Inf :: i:Nat → x:a → xs:L a

→ (j:{Nat | j < i} → Prop (InfiniteC j xs))

→ Prop (InfiniteC i (x :| xs))

The list x :| xs is infinite when xs is also infinite, while
there is no constructor to ensure an empty list is infinite. Of
course, this is a consequence of the meaning of the predicate,
while for most predicates (e.g., dup or nneg) the constructive
property requires more than one constructors.
In both techniques, the list proofs are similar to the ones

on streams. To reconstruct the original from the indexed
predicate, similar to streams, we assume the lemma below:
infLemma :: xs:L a → (k:Nat → {infiniteK xs k})

→ {infinite xs}

Property 9: List map fusion. Our last property proves
map fusion on infinite lists:
mapFusion :: f:(b → c) → g:(a → b) → xs:L a

→ {map f (map g xs) = map (f . g) xs}

The indexed predicate for list equality has now four cases:
eqK :: Eq a ⇒ L a → L a → k: Nat → Bool

eqK _ _ 0 = True

eqK Nil Nil k = True

eqK (a:|as) (b:|bs) k = a == b && eqK as bs (k-1)

eqK _ _ _ = False

The first three cases are expected, while the last returns false
when comparing an empty to a non empty list.

As with the infinite predicate, the false cases simply do
not appear in the constructive predicate, which for equality
has two constructors: one that equates empty lists and the
coinductive that compares two non empty lists.
data EqC a where

EqNil :: i:Nat

→ Prop (EqC i Nil Nil)

EqCos :: i:Nat → x:a → xs:L a → ys:L a

→ (j:{Nat | j < i} → Prop (EqC j xs ys))

→ Prop (EqC i (x :| xs) (x :| ys))

The proofs are unsurprising, while, as in stream equality,
we used the take lemma to retrieve SMT equalities.

Note onmore complex data types. Even though we only
evaluated our techniques on streams and lists, we are confi-
dent that they apply to more complex data types. Essentially
the requirement to apply our techniques to some codata is
the ability to assume the “take lemma”. Hutton and Gibbons
[2001] explain how the approximation lemma, which is a
simplification of the take lemma, can be generalized to any

data type µF , where F is a locally continuous functor, ensur-
ing that the generalized approximation lemma, and thus our
techniques, do apply to e.g., infinite tree-like data types.

4.1 Comparison of the Two Techniques
Based on our case studies and experience, we compare the
two techniques (indexed and constructive) on three axes:
(1) code size, (2) expressiveness, and (3) cognitive effort.

Code size. Table 0 presents the lines of code required for
our proofs. TheExec column contains the executable Haskell
functions (e.g., merge , smap) as well as the original versions of
the predicates (e.g., below). The Indexed and Constructive
columns can be used to compare the code required for each
approach, whereAnnot. refers to the Liquid Haskell specific
annotations while Proof is the Haskell proof terms that
inhabit them. The sum of annotations and proofs is 281 lines
of code for both approaches. The fact that this number is
exactly the same in both approaches is a coincidence; it was
however expected that code size would be similar, since
each approach has a different (but similar in size) overhead.
In the constructive approach the definition of the GADT
takes many lines, especially because they are defined twice:
the Liquid Haskell refined definitions also require unrefined
Haskell GADT. On the other hand, the indexed approach has
the overhead of encoding proof combinators (e.g., operator
(=#=) of §2.1) for some of the predicates. The size of the
proofs of the properties is very similar in both approaches.

Expressiveness. Our examples only involve “computable”
predicates, i.e., predicates that can be expressed as Haskell
Boolean functions. On this domain, we observe that the
expressiveness of the two approaches is the same, since we
did not run into a coinductive predicate that can be encoded
using one technique but not the other. The indexed approach
lets you conduct the proofs by folding and unfolding the
Haskell indexed predicate, while the constructive approach
goes by case splitting and applying the data constructor of
the GADT. The expressiveness advantage of the constructive
approach will show on reasoning about non computable
predicates, in the style of Kleene closures [Winskel 1993],
but we leave such predicates as future work.

Cognitive effort. The constructive approach is more ex-
pressive, yet our educated claim is that it requires more
cognitive effort. Data propositions is a novel Liquid Haskell
feature that encodes Coq-style inductive predicates using
GADTs. We conjecture that Haskell programmers are not
very familiar with this style of constructive programming.
Yet, once the user hits the maximum of the constructive
learning curve, our constructive technique is cleaner: in most
situations the constructors are the only place we have in-
dices. The term expansion and the coinductive hypothesis
are usually index-free!
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5 Related Work
Here we present the three mechanized verifiers that influ-
enced our work (§5.0) and summarize how existing verifiers
for Haskell programs treat coinduction (§5.1). We refer the
reader to Jacobs and Rutten [1997] for a foundational tutorial
on coinduction and to Gibbons and Hutton [2005] for (paper
and pencil) proofs on Haskell corecursive programs.

5.0 Mechanized Coinduction
Coq has, for some time now, support for coinduction [Bertot
2006]. The proving technique in §3 is partly inspired from
the Coq’s textbook [Chlipala 2013] bisimilarity relation for
infinite streams, where in place of syntactic guardedness
we use natural numbers to keep track of productivity. Both
Coq’s and our guardedness conditions are similarly strict
and require data to produce, thus rejecting functions and
properties that are not proved to be always productive, such
as filter properties [Rusu and Nowak 2022]. The disad-
vantage of Coq’s coinductive mechanization, compared to
our technique, is that the proof is checked after QED, which
means that the user interaction is lost. In our Liquid Haskell
encoding, we have no user interaction, but we do have local-
ized errors. The approach of §2 preserves local errors (and
thus better user experience), while §3, as in Coq, has no proof
steps and only returns a general failing error.

Mini Agda’s coinduction [Abel 2010] is quite similar to
Coq’s in the encoding of bisimilarity. A key difference is that
Mini Agda uses sizes to encode guardedness — a feature that
we leverage in §3 in order to encode bisimilarity in Liquid
Haskell. In actual proofs, this difference is not significant
since the invocation of the coinductive hypothesis is imme-
diate. However, sizes prove useful when dealing with more
complex definitions, e.g., various coinductive functions.More
on the expressiveness of sizes as a measure of productivity
can be found in [Abel 2010; Abel and Pientka 2016].

Dafny’s approach of coinduction [Leino andMoskal 2014]
greatly inspired our indexed approach (§2). Coinductive
predicates are syntactically checked to ensure monotonicity,
which is important for proving soundness. Indexed proofs
are formed by proving the indexed version of the predicate
for all indexes. Finally, coinductive proofs are obtained by
using the correspondent axiom, like we do in §4.0.1 with
trivialLemma . Of course, Dafny provides an automated pro-
gram transformation that introduces indices, while in our
case the transformation is manually performed by the user.
In [Leino and Moskal 2014] we can also find a proof of

soundness, which connects indexed proofs and predicates
to coinductive ones. It uses the Kleene fix-point theorem
[Winskel 1993], after proving Scott-continuity for predicates.
An important takeaway is “positivity”, which is a restriction
on the form of predicates that can be approximated using
the indexed method.

5.1 Haskell Verifiers
Many Haskell verifiers target only total Haskell programs,
which permits using well known and automated inductive
verification techniques but allows them to prove properties
that do not hold in the presence of infinite data. Consider for
example, the standard Haskell encoding of natural numbers:
data Nat = Z | S Nat. Zeno [Sonnex et al. 2012] assumes
all values are total and, in Theorem 10 of its test suite, auto-
matically proves that ∀ m:Nat. m - m = Z, which does not
hold when m is infinite, because the left-hand-side will not
terminate. Liquid Haskell can also prove the same property
and also can prove false (§1.3) in the presence of infinite
data. The soundness of inductive reasoning is preserved by
rejecting non-wellfounded data definitions. With the well-
foundedness check active, users can employ the well under-
stood principle of induction to reason about their programs,
but are not able to define coinductive types and reason about
their properties as we did here.

HERMIT [Farmer et al. 2012] and HALO [Vytiniotis et al.
2013] are two Haskell verifiers that do reason about infinite
data. HERMIT performs equational reasoning by rewriting
the GHC core language, guided by user specified scripts.
This approach is far from ours where the proofs are Haskell
programs while SMT solvers are used to automate reason-
ing. HALO is a prototype contract checker that translates
Haskell programs to first-order SMT logic, using denota-
tional semantics, and validates them against user-provided
contracts. HALO reasons about laziness and infinite data and
explicitly encodes Haskell’s bottom in SMT logic. Unfortu-
nately, this encoding renders HALO’s SMT queries outside
of decidable logics which makes verification using HALO
unpredictable. On the contrary, Liquid Haskell prioritizes
SMT-predictable verification, so it shamefully disregards bot-
toms, which, currently, makes coinductive reasoning possible
only with explicit user encodings, like the ones we presented.

Hs-to-coq [Spector-Zabusky et al. 2018] converts Haskell
code to Coq, which users can verify for functional correct-
ness. Hs-to-coq has been used to verify real Haskell code
(e.g., the containers library) and permits coinductive reason-
ing. Concretely, the user can annotate data types as coin-
ductive and functions as corecursive and then use Coq’s
CoInductive principle to prove coinductive properties. Thus,
the properties of § 4 can be verified, in Coq, via hs-to-coq.

Dependent Types for Haskell is a work initiated by Eisen-
berg [2016] and is currently under active design in GHC
(see ghc-proposal#378). Interestingly, the dependent Haskell
proposal promises neither a termination nor a guardedness
check. We conjecture that in the presence of codata, the lack
of a guardedness check could lead to inconsistencies, similar
to §1.3, and we believe that the lessons presented in this
work can be used by the GHC’s dependent types proposal.

https://github.com/ghc-proposals/ghc-proposals/pull/378
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6 Conclusion
We used the Liquid Haskell inductive verifier to prove 10
properties on infinite data by coinduction. We encoded coin-
duction in the inductive verifier using two approaches. In the
indexed approach, the predicate is indexed by a natural num-
ber k and the proof is by induction on k. In the constructive
approach, the predicate is encoded as a refined GADT which
is guarded using indexing. Using either of these approaches,
a Haskell programmer can machine check coinductive prop-
erties of their Haskell code in Liquid Haskell.
As an important contribution, with this experiment we

concretely identify two alternative extensions required for
Liquid Haskell (or even GHC’s dependent types) to natively
support coinductive reasoning: indexed predicate transfor-
mation (in the classical logic setting; like in Dafny), or im-
plementation of a guardedness check (in the constructive
setting; like in Coq).

In the future, we can design and implement automation to
realize the two proposed encodings, currently manually pro-
vided by the user. We see two potential directions for such
automation. First, we could follow Dafny’s approach [Leino
and Moskal 2014] to mechanically transform copredicates
and cofunctions by inserting an index that will, also me-
chanically, be used to ensure the guardedness and positivity
requirements. A second direction would be to use SMT’s
(concretely CVC4’s [Reynolds and Blanchette 2017]) sup-
port for codata to reason about coinductive properties using
SMT’s decision procedures.
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