A TALE of TWO

»

by Niki Vazou, Leonidas Lampropoulos and Jeff Polakow

Haskell

take:: Int » [a] » [a]

Liquid Haskell

B

take ::1:{Intl@<1}->xs:{[a]l1<len xs}->[a]l

Liquid Haskell

e

take ::1:{Intl@<1}->xs:{[a]l1<len xs}-[a]

take 2 [1,2,3] OK

T — —

take 9 [1,2,3] Error

T — T

Liquid Haskell

take 2 [1,2,3] % 0 < 2 <

T —
——

OK

take 9 [1,2,3]

T —
T

Is Liquid Haskell a Theorem Prover?

Is Liquid Haskell a Theorem Prover®?

Theorem: |

Parallelism |

Fquivalence

If £ 1s a morphism*between two lists,
then £ can be applied in parallel.

*f is a morphism when
f [I=[1 A f (Xx<x>y) = X <> Ty

Is Liquid Haskell a Theorem Prover?

Theorem: |

Parallelism |

Fquivalence

If £ 1s a morphism*between two lists,
thenf x = concat (pmap f (chunk i x)).

*f is a morphism when
f [I=[] A f (X<>y) =T X <> Fy

Is Liguid Haskell a Theorem Prover®?

pEquiv :: f:([a] -> [b])
-> Morphism [a] [b] f
-> x:[a] -> 1:Pos |
-> {f x = concat (pmap f (chunk 1 x))}

e e e e —— e e i e —— e e e e e 1

*f is a morphism when
f [I=[] A f (X<>y) =T X <> Fy

Is Liguid Haskell a Theorem Prover®?

pEquiv :: f:([a] -> [b])
-> Morphism [a] [b] f
-> x:[a] -> 1:Pos |
-> {f x = concat (pmap f (chunk 1 x))}

e e — e e i e — e i ——— e e 1

“type Morphism a b f = x:a -> y:b ->
{f =l A f (Xx<oy) =T X <> f y}

Is Liquid Haskell a Theorem Prover?
Yes!

e e e e e — e e e e e s I 1

pEquiv :: f:([a] -> [b])
-> Morphism [a] [b] f
-> x:[a] -> 1:Pos E

-> {f x = concat (pmap f (chunk 1 x))}l

Theorems: Refinement Types
Proofs: (Terminating) Haskell Terms
Correctness: Liquid Type Checking

Is Liguid Haskell a Theorem Prover®?
Yes!

e e —— e e e e e _— e e e e e s I 1

pEquiv :: f:([a] -> [b])
-> Morphism [a] [b] f
-> x:[a] -> 1:Pos |
-> {f x = concat (pmap f (chunk 1 x))}

Demo

Morphism Parallelism Equivalence

r—(————— /1
| pEquiv :: (Chunkable n, Monoid m)

=> f:(n -> m)
-> Morphism n m f
-> X:n -> 1:Pos

-> {f x = mconcat (pmap f (chunk i x))}
. - - - e Ao s e

H
| H
| |
| |
|
! n

Application: String Matching

Application: String Matching

Find all the occurrences of a target string
IN an input string.

Application: String Matching

Find all the occurrences of a target string
IN an input string.

“the best of times”

Application: String Matching

Find all the occurrences of a target string

¢¢

IN an input string.

1 2 3 4 5 6 /7 8 9 1011 12 13 14 15 10 1/

th

e

b

e

S

.t

O

.F

i

1

m

e

S

)

Target “es” matches at [b6, 16].

Application: String Matching
s\ AWAKE

669L0oC

Exec Spec Proof

LoC (Proofs/Exec): 5X
Verification Time: 20 min

Human Effort: 2 months

766L0oC
669L0C §

285LoC §2481 oC

122L.0C
Exec Spec Proof
LoC (Proofs/Exec): OX 8x
Verification Time: 20 min 38 sec

Human Effort: 2 months & weeks

.......
e

OO
,,,,,,,,,,,,,

Haskell VS. Non-Haskell Proofs

¢>§ VS.

Haskell VS. Non-Haskell Proofs

SMT- VS. Tactic- Based Automations

¢>§ VS.

Haskell VS. Non-Haskell Proofs
SMT- VS. Tactic- Based Automations

Intrinsic VS. Extrinsic Verification

Intrinsic VS. Extrinsic Verification

take :: 1:Nat » xs:{1<len xs} > {vilen v=1}

take @ _
take 1 xs = x:take (1-1) Xxs

Intrinsic VS. Extrinsic Verification

e

take :: 1:Nat » xs:{1<len xs} - {vilen v=1}

take 0 _ |
take 1 xs = x:take (1-1) xs |

&:L i S S——— o S ————— e

| take seq. take 1

take_spec
I 1 X, 1<length x-length (take 1 x)=1 I

¢>§ VS.

Haskell VS. Non-Haskell Proofs
SMT- VS. Tactic- Based Automations

Intrinsic VS. Extrinsic Verification

¢>§ VS.

Haskell VS. Non-Haskell Proofs
SMT- VS. Tactic- Based Automations
Intrinsic VS. Extrinsic Verification

Semantic VS. Syntactic Termination

Semantic VS. Syntactic Termination

chunk :: 1:Pos » xs:[a] » [[a]] [/ [Ten xs1:

Semantic VS. Syntactic Termination

chunk ::1:Pos->xs:[a]-»>[[al] / [len xs]

Fixpoint chunk {M: Type}i(fdéizh'

(i: nat) (x: M) : option CLISE M)

Big VS. Tiny Trusted Code Base

chunk :: 1:Pos-s>xs:[a]l->[[al] / [len xs]

'>§ —F SMT — Error

Big VS. Tiny Trusted Code Base

OK/

.hs —% ghc

¢>§ VS.

Haskell VS. Non-Haskell Proofs
SMT- VS. Tactic- Based Automations
Intrinsic VS. Extrinsic Verification

Semantic VS. Syntactic Termination

Big VS. Tiny Trusted Code Base

¢>§ VS.

Haskell VS. Non-Haskell Proofs
SMT- VS. Tactic- Based Automations
Intrinsic VS. Extrinsic Verification
Semantic VS. Syntactic Termination
Big VS. Tiny Trusted Code Base
Proof Verifier VS. Assistant

A Tale of Two Provers

Conclusion

Liquid Haskell is a promising prover, but
needs a lot of Coq-inspired future work.

A Tale of Two Provers

Conclusion

Liquid Haskell is a promising prover, but
needs a lot of Coq-inspired future work.

Fast “tactics”
Liquid GUI Proof Assistant
Hackage Sharing Proofs

Thanks!

