
A TALE of TWO

by Niki Vazou, Leonidas Lampropoulos and Jeff Polakow

P
R
O
V
E
R
S

 take ::

Haskell

Int ! [a] ! [a]

 take ::

i:{Int|0≤i} ! xs:{[a]|i≤len xs} ! [a]

Liquid

Int ! [a] ![a]

Haskell

 take 2 [1,2,3]

OK

 take 9 [1,2,3]

 take ::

i:{Int|0≤i} ! xs:{[a]|i≤len xs} ! [a] Int ! [a] !

Error

Liquid Haskell

 take 2 [1,2,3]

OK

 take 9 [1,2,3]

Error

 0 ≤ 2 ≤ 3

 0 ≤ 9 ≤ 3

SMT

 take ::

i:{Int|0≤i} ! xs:{[a]|i≤len xs} ! [a] Int ! [a]

Liquid Haskell

Is Liquid Haskell a Theorem Prover?

 *f is a morphism when
f []=[] ∧ f (x<>y) = f x <> f y

Theorem: Parallelism Equivalence
If f is a morphism*between two lists,
then f can be applied in parallel.

*

Is Liquid Haskell a Theorem Prover?

Theorem: Parallelism Equivalence
If f is a morphism*between two lists,
then .

 *f is a morphism when
f []=[] ∧ f (x<>y) = f x <> f y

f x = concat (pmap f (chunk i x))
*

Is Liquid Haskell a Theorem Prover?

 pEquiv :: f:([a] -> [b])

 -> Morphism [a] [b] f
 -> x:[a] -> i:Pos
 -> {f x = concat (pmap f (chunk i x))}

f x = concat (pmap f (chunk i x))

 *f is a morphism when
f []=[] ∧ f (x<>y) = f x <> f y

Is Liquid Haskell a Theorem Prover?

 pEquiv :: f:([a] -> [b])

 -> Morphism [a] [b] f
 -> x:[a] -> i:Pos
 -> {f x = concat (pmap f (chunk i x))}

f x = concat (pmap f (chunk i x))

 *type Morphism a b f = x:a -> y:b ->
f []=[] ∧ f (x<>y) = f x <> f y { }

Is Liquid Haskell a Theorem Prover?

 pEquiv :: f:([a] -> [b])

 -> Morphism [a] [b] f
 -> x:[a] -> i:Pos
 -> {f x = concat (pmap f (chunk i x))}

f x = concat (pmap f (chunk i x))

Yes!

Theorems:
Proofs:

Refinement Types
(Terminating) Haskell Terms

Correctness: Liquid Type Checking

Is Liquid Haskell a Theorem Prover?

 pEquiv :: f:([a] -> [b])

 -> Morphism [a] [b] f
 -> x:[a] -> i:Pos
 -> {f x = concat (pmap f (chunk i x))}

f x = concat (pmap f (chunk i x))

Demo

Is Liquid Haskell a Theorem Prover?
Yes!

Morphism Parallelism Equivalence

Application: String Matching

 pEquiv :: RightId [b]
 -> f:([a] -> [b])

 -> Morphism [a] [b] f
 -> x:[a] -> i:Pos
 -> {f x = concat (pmap f (chunk i x))}

=> f:([a] -> m)

-> Morphism [a] m f

-> {f x = mconcat (pmap f (chunk i x))}

=> f:(n -> m)

(Monoid m)(Chunkable n, Monoid m)

-> Morphism n m f
-> x:n -> i:Pos

Find all the occurrences of a target string
in an input string.

Application: String Matching

“the best of times”

Find all the occurrences of a target string
in an input string.

Application: String Matching

Find all the occurrences of a target string
in an input string.

Application: String Matching

 “the best of times”
1 2 3 54 6 87 9 10 11 1312 161514 17

Target “es” matches at [6, 16].

Verification Time:

0

200

400

600

800

Exec Spec Proof

669LoC

285LoC
180LoC

Application: String Matching

Human Effort:

5x

20 min

2 months

LoC (Proofs/Exec):

0

200

400

600

800

Exec Spec Proof

766LoC

248LoC
122LoC

669LoC

285LoC
180LoC

Verification Time:

Human Effort:

5x

20 min

2 months

8x

38 sec

2 weeks

VS.

LoC (Proofs/Exec):

VS.

Haskell VS. Non-Haskell Proofs

VS.

SMT- VS. Tactic- Based Automations

Haskell VS. Non-Haskell Proofs

VS.

Intrinsic VS. Extrinsic Verification

SMT- VS. Tactic- Based Automations

Haskell VS. Non-Haskell Proofs

Intrinsic VS. Extrinsic Verification

 take :: i:Nat ! xs:{i≤len xs} ! {v|len v=i}

 take 0 _ = []
 take i xs = x:take (i-1) xs

 Definition take := seq.take.

 Theorem take_spec:
 ∀i x, i ≤ length x ! length (take i x) = i.

 take :: i:Nat ! xs:{i≤len xs} ! {v|len v=i}

 take 0 _ = []
 take i xs = x:take (i-1) xs

Intrinsic VS. Extrinsic Verification

VS.

SMT- VS. Tactic- Based Automations

Intrinsic VS. Extrinsic Verification

Haskell VS. Non-Haskell Proofs

VS.

SMT- VS. Tactic- Based Automations

Intrinsic VS. Extrinsic Verification

Semantic VS. Syntactic Termination

Haskell VS. Non-Haskell Proofs

 chunk :: i:Pos ! xs:[a] ! [[a]] / [len xs]

Semantic VS. Syntactic Termination

 Fixpoint chunk {M: Type} (fuel: nat)
 (i: nat) (x: M) : option (list M)

 chunk :: i:Pos ! xs:[a] ! [[a]] / [len xs]

Semantic VS. Syntactic Termination

 chunk :: i:Pos ! xs:[a] ! [[a]] / [len xs]

SMT OK /
Errorghc

Big VS. Tiny Trusted Code Base

SMT OK /
Errorghc.hs

Big VS. Tiny Trusted Code Base

VS.

Big VS. Tiny Trusted Code Base

Semantic VS. Syntactic Termination

SMT- VS. Tactic- Based Automations

Intrinsic VS. Extrinsic Verification

Haskell VS. Non-Haskell Proofs

VS.

Big VS. Tiny Trusted Code Base

Semantic VS. Syntactic Termination

SMT- VS. Tactic- Based Automations

Proof Verifier VS. Assistant

Intrinsic VS. Extrinsic Verification

Haskell VS. Non-Haskell Proofs

A Tale of Two Provers

Conclusion

Liquid Haskell is a promising prover, but
needs a lot of Coq-inspired future work.

A Tale of Two Provers

Conclusion

Hackage Sharing Proofs
Liquid GUI Proof Assistant

Fast “tactics”

Thanks!

Liquid Haskell is a promising prover, but
needs a lot of Coq-inspired future work.

