
N I K I VA Z O U

P R O G R A M M I N G W I T H

R E F I N E M E N T T Y P E S

A N I N T R O D U C T I O N T O L I Q U I D H A S K E L L

Version 13, March 15th, 2024.

Copyright © 2024 Niki Vazou

Licensed under the Apache License, Version 2.0 (the “License”); you may not use this file except in com-
pliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/
LICENSE-2.0. Unless required by applicable law or agreed to in writing, software distributed under the
License is distributed on an “as is” basis, without warranties or conditions of any kind, either
express or implied. See the License for the specific language governing permissions and limitations under
the License.

http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0

Contents

1 Refinement Types 7

Installation 8

Basic Refinement Types 8

Subtyping 9

From Subtyping to Verification Conditions 9

Verification Conditions 10

Primitive Operations 12

Function Types 13

Branching and Recursion 15

Refined Polymorphism 16

Putting it all together: Safe Indexing 17

Summary 18

Further Reading 20

Cheatsheet 20

2 Data Types 21

4 niki vazou

3 Case Study: Insertion Sort 23

4 Abstract Refinement Types 25

5 Theorem Proving 27

6 Data Propositions 29

List of Exercises

1

Refinement Types

Refinement types are types refined with logical predicates that
enforce a variety of invariants at compile time. In this course, we will
learn the refinement type system of Liquid Haskell.

If you follow this course via a brouser, you can just click the check
button that exists on the code spinnets to run Liquid Haskell on
your file. If you follow it on an editor, then compile the code using
the Haskell compiler and turn on the ‘Liquid Haskell plugin“, but
uncommenting the following line:

{- OPTIONS_GHC -fplugin=LiquidHaskell #-}

{-@ LIQUID "--no-termination" @-}

module Lecture_01_RefinementTypes where

main :: IO ()

main = return ()

Either way, you can now use the Liquid Haskell type checker, for
example to check that division by zero is not possible.

test :: Int -> Int

test x = 42 `div` 2

If we call div with zero, directly or even indirectly via the x argu-
ment, then at runtime we will get a division by zero error.

ghci> test 0

*** Exception: divide by zero

Liquid Haskell comes with a refined type for the division operator
that specified that the second argument must be non-zero.

8 programming with refinement types

div :: Int -> {v:Int | v /= 0} -> Int

The above type specifies that the second argument must be non-
zero and is automatically checked at compile time, using an SMT
solver. Today, we will learn how these checks are performed, and
how to write and use refined types in Haskell.

Installation

Liquid Haskell exists on hackage, which is the Haskell package
repository, so you can install it using cabal, stack, or instal it from
source:

• cabal install liquidhaskell will install the Liquid Haskell
plugin that you can use in your Haskell projects.

• Source installation will let you clone Liquid Haskell from github
and install it.

The source code of these class notes can also be downloaded and
executed from github1 1 These notes are adjusted from the

Liquid Haskell Tutorial.
Note: This is the first time I am giving these lectures, so I would

appreciate any feedback you might have, via the virtual classroom,
pull requests, or email at niki.vazou@imdea.org.

Basic Refinement Types

Did you note that 2 is a good argument for the division operator?

But, what is the type of 2?

In Haskell 2:Int, but the same value can have many different
refinement types. A basic refinement type has the form

{v : b | p}

where b is the base type (e.g., Int, Bool, etc.) and p is a logical predi-
cate.

For example, the logical predicate that refines the type of 2 can
have many different forms:

https://hackage.haskell.org/package/liquidhaskell
https://ucsd-progsys.github.io/liquidhaskell/install/
https://github.com/ucsd-progsys/liquidhaskell?tab=readme-ov-file#running-the-pluging-on-individual-files
https://github.com/nikivazou/liquidhaskell-course
https://ucsd-progsys.github.io/liquidhaskell-tutorial/

refinement types 9

{-@ type Two = {v:Int | v == 2} @-}

{-@ type FortyTwo = {v:Int | v == 42} @-}

{-@ type NZero = {v:Int | v /= 0} @-}

{-@ type Pos = {v:Int | v > 0} @-}

{-@ type Neg = {v:Int | v < 0} @-}

{-@ type Nat = {v:Int | 0 <= v} @-}

two :: Int

two = 2

Question: What are good types for two?

Question: Can you find more types for two?

Subtyping

So, what is the type of 2? In Liquid Haskell, integers and other
constants, e.g., booleans, characters, etc., are given a singleton type,
meaning a type that has only one value. So, the typing rule for
integers is:

T-Int
Γ ⊢ i : {Int | v = i}

In an unrefined system this would be the only type for 2. But
refinement types have the notion of subtyping, which can give an
expression many different types.

The rule for subtyping is the following:

T-Sub

Γ ⊢ e : τ1 Γ ⊢ τ1 ⪯ τ2
Γ ⊢ e : τ2

This rule states that in an expression, like 2, that has type τ1 and τ1

is a subtype of τ2, then 2 can also have type τ2.

So, 2 : {Int | 0 ≤ v}, because {Int | v = 2} ⪯ {Int | 0 ≤ v}. But,
let’s see how subtyping is decided.

From Subtyping to Verification Conditions

The subtyping rule for base types, e.g., integers, booleans, etc., is the
following:

10 programming with refinement types

Sub-Base

Γ ⊢ ∀v : b.p1 ⇒ p2
Γ ⊢ {v : b | p1} ⪯ {v : b | p2}

Meaning that {v : b | p1} ⪯ {v : b | p2}, if p1 “implies” p2 for
all values v of type b. To check implications, we use the below two
implication rules that are based on the SMT solver2. 2 SMT stands for Satisfiability Modulo

Theories and are automated tools
that check the satisfiability of logical
formulas. Known SMT solvers are Z3,
CVC5, etc.

I-Emp

SmtValid(c)
∅ ⊢ c

I-Ext

Γ ⊢ ∀x.p ⇒ c
Γ, x : {x : b | p} ⊢ c

Example: When we check that 2 is indeed a natural number, the
following derivation takes place

T-Sub
T-Int ∅ ⊢ 2 : {v : Int | 2 = v} Sub-Base

I-Emp
SmtValid(∀v:Int.2=v⇒0≤v) ∅⊢∀v:Int.2=v⇒0≤v

∅ ⊢ {v : Int | 2 = v} ⪯ {v : Int | 0 ≤ v}
∅ ⊢ 2 : {v : Int | 0 ≤ v}

So, the type derivation succeeds, because the SMT can indeed
decide that the implication 2 = v ⇒ 0 ≤ v is valid.

In general, we call such implications verification conditions and the
main task of a refinement type checker is to reduce the type checking
problem to validity of verification conditions.

Verification Conditions

Liquid Haskell takes great care to ensure that type checking is de-
cidable and efficient. To achieve this, it has to be careful to generate
verification conditions that are decidable and efficiently checkable
by the SMT solver. The rules Sub-Base and I-Ext, presented above,
are the main rules that generate verification conditions from the
predicates found in the refinement types. Below is the syntax of the
predicates and verification conditions:

refinement types 11

Predicates p ::= x, y, z variables
| true, false booleans
| 0,−1, 1, . . . numbers
| ¬p, p1 ∧ p2, p1 ∨ p2 boolean operators
| p1 = p2 equality
| p1 + p2, p1 − p2, . . . linear arithmetic
| f (p1, . . . , pn) uninterp. functions

Verification Conditions c ::= p predicates
| c1 ∧ c2 conjunction
| ∀x : b.p ⇒ c implication

Verification Conditions can be predicates, as a base case, conjunction,
so that many verification conditions can be gathered together, and
implications, as generated by the I-Ext rule. Most of the syntax of
predicates should be familiar to you.

Question: Do we need more boolean operators? Or maybe less?

Uninterpreted functions are essentially logical functions that always
return the same value for the same input.

∀x y.x = y ⇒ f (x) = f (y)

They are essential for program verification because 1. they can
be used to encode program functions in the logic and 2. they can be
used to capture ideas not directly implemented.

For example, in Liquid Haskell, we use the measure keyword to
define uninterpreted functions.

{-@ measure isPrime :: Int -> Bool @-}

Given the property of being a function, Liquid Haskell, via SMT,
can prove than on same input, isPrime returns the same output.

{-@ uninteprCheck :: x:Int -> y:Int

-> {v:() | x = y => isPrime x = isPrime y } @-}

uninteprCheck :: Int -> Int -> ()

uninteprCheck _ _ = ()

12 programming with refinement types

Primitive Operations

Up to now, we have seen how type checking (of base types) is re-
duced to checking of verification conditions. We also saw that con-
stants, like integers and booleans, are given singleton types. But,
what about other operations, like addition, subtraction, etc.? Re-
member that the type of div was refined to ensure that the second
argument is non-zero. The same happens for other “primitive” opera-
tions, like addition, subtraction, etc. They all come with refined types
that essentially map their operations to the SMT primitives.

So, in Liquid Haskell we have the following refined types for the
basic operations:

(+) :: Num a => x:a -> y:a -> {v:a | v = x + y}

(-) :: Num a => x:a -> y:a -> {v:a | v = x - y}

(&&) :: x:Bool -> y:Bool -> {v:Bool | v = x && y }

(||) :: x:Bool -> y:Bool -> {v:Bool | v = x || y }

(==) :: Eq a => x:a -> y:a -> {v:Bool | v = (x = y)}

Such specifications of primitive operators come are trusted as-
sumptions, required to connect the primitives of the programming
language to the SMT solver. Thus, the refinement rule for such con-
stants is:

T-Const
Γ ⊢ c : tyConst(c)

Question: What is the verification condition of the problem below?

{-@ threePlusSix :: {v:Int | 0 <= v} @-}

threePlusSix :: Int

threePlusSix = 3 + 6

Question: What is the verification condition of the problem below?

{-@ plusSix :: x:Int -> {v:Int | x <= v} @-}

plusSix :: Int -> Int

plusSix x = x + 6

Question: Can you make the above code return only natural
numbers?

refinement types 13

Function Types

Refinements on function arguments define preconditions, i.e., assump-
tions about the arguments of the function, while refinements on the
return type define postconditions, i.e., guarantees about the return
value of the function.

For example, addition of two odd numbers is guaranteed to be
even:

{-@ type Odd = {v:Int | v mod 2 = 1} @-}

{-@ type Even = {v:Int | v mod 2 = 0} @-}

{-@ addOdds :: x:Odd -> y:Odd -> Even @-}

addOdds :: Int -> Int -> Int

addOdds x y = x + y

Increasing a positive number is guaranteed to be positive:

{-@ incrPos :: x:Pos -> Pos @-}

incrPos :: Int -> Int

incrPos x = x + 1

Question: What is the verification condition of the problem below?

So, the verification condition generated when checking the output,
puts into the typing context the input and then checks the postcondi-
tion:

T-Fun
Γ; x : τx ⊢ e : τ

Γ ⊢ λx.e : x : τx → τ

When type checking function applications, the subtyping rule is
used to weaken the type of the argument into the correct type (e.g.,
make 2 a natural number).

T-App
Γ ⊢ e : (x : τx → τ) Γ ⊢ y : τx

Γ ⊢ e y : x : τx → τ[x/y]

Note: The type of the result can contain the input variable which
is substitute. For example, what is a precise type for incr2?

incr :: Int -> Int

{-@ incr :: x:Int -> {v:Int | v = x + 1} @-}

incr x = x + 1

14 programming with refinement types

incr2 :: Int -> Int

incr2 x = incr (incr x)

Note: Refinement types assume that application only happens
with variables as arguments. This is not a limitation because inter-
nally we can always use a let binding to bind the argument to a
variable. E.g., the above definition of incr2 is equivalent to:

incr2 x = let y = incr x in incr y

This transformation is called ANF (administrative normal form).
Can you think why it is required?

Subtyping exists also on function types and it gets interesting. . .

Question: Which of the following functions can be applied to
higher?

fII, fIP, fIN, fPI, fPP, fPN, fNI, fNP, fNN :: Int -> Int

higher :: (Int -> Int) -> Int

fII = undefined

fIP = undefined

fIN = undefined

fPI = undefined

fPP = undefined

fPN = undefined

fNI = undefined

fNP = undefined

fNN = undefined

higher = undefined

{-@ fII :: Int -> Int @-}

{-@ fIP :: Int -> Pos @-}

{-@ fIN :: Int -> Nat @-}

{-@ fPI :: Pos -> Int @-}

{-@ fPP :: Pos -> Pos @-}

{-@ fPN :: Pos -> Nat @-}

{-@ fNI :: Nat -> Int @-}

{-@ fNP :: Nat -> Pos @-}

{-@ fNN :: Nat -> Nat @-}

refinement types 15

{-@ higher :: (Nat -> Nat) -> Nat @-}

testhigher = higher fNN

As we should have figured out, the rule says that the result type
should be a subtype but the argument a subpertype.

Sub-Fun

Γ ⊢ τx2 ⪯ τx1 Γ; x2 : τx2 ⊢ τ1[x1/x2] ⪯ τ2
Γ ⊢ x1 : τx1 → τ1 ⪯ x2 : τx2 → τ2

We call the above rule on the argument contravariant and on the
result covariant. Also, note that the result is checked under a context
that contains the strongest argument!

Branching and Recursion

Let’s compute the absolute value of a number.

abs :: Int -> Int

abs x = if x > 0 then x else -x

Question: What is the type of abs? Question: What is the verifica-
tion condition generated?

Refinement types are branch sensitive, meaning that the type of the
result of a branch depends on the condition of the branch.

The typing rule for branches takes this sensitivity into account:

T-If

Γ ⊢ x : {v : bool | p} Γ; y : {y : bool | x} ⊢ e1 : τ Γ; y : {y : bool | ¬x} ⊢ e2 : τ
Γ ⊢ if x then e1 else e2 : τ

Note that the branch is also in ANF, so that it can get into the re-
finements. The typing uses a fresh variable y to capture the condition
of the branch.

Of course, branching makes more sense when accompanied with
recursive functions. Let’s confirm that the sum of the first n natural
numbers is greater then n:

sumN :: Int -> Int

sumN n = if n == 0 then 0 else n + sumN (n - 1)

16 programming with refinement types

Question: What is the type of sumN?

Question: What is the verification condition generated?

Type checking of recursive functions is itself a recursive process.
Meaning, to check the type of sumN, we need to assume that sumN has
the correct type!

T-Rec

Γ; f : τf ⊢ e f : τf Γ; f : τf ⊢ e : τ
Γ ⊢ let rec f = e f in e : τ

Refined Polymorphism

The truth is polymorphism is a difficult topic in the area of program-
ming languages. But, as a first step let’s only see its great points and
for refinement types, the great benefit of polymorphism is that any
polymorphic function can be instantiated to refined values. For ex-
ample, the identity function can be instantiated to propagate natural
numbers:

myid :: a -> a

myid x = x

testPoly :: Int

{-@ testPoly :: Nat @-}

testPoly = higher myid

This is extremely powerful because it allows us to write generic
code to propagate any application specific refinements! Next, we will
see how this takes effect when using generic structures (e.g., arrays or
in general data types). But now, for completeness, lets see the rules
for polymorphism.

To get a polymorphic system, we need the ability to abstract and
instantiate over type variables:

T-TAbs

Γ; α ⊢ e : τ
Γ ⊢ Λα.e : ∀α.τ

T-TInst

Γ ⊢ e : ∀α.τ
Γ ⊢ e[τα] : τ[τα/α]

Since we allow subtyping, we also need to allow subtyping on
polymorphic types. For simplicity, we assume that the type variable
is renamed to be the same:

Sub-Abs

Γ; α ⊢ τ1 ⪯ τ2
Γ ⊢ ∀α.τ1 ⪯ ∀α.τ2

refinement types 17

Putting it all together: Safe Indexing

The major application of refinement types is to ensure indexing is
safe. So, let’s generate structures of arrays and safely index them.
Meaning ArrayN a n is an array of n elements of type a and accessing
them with an index less than 0 or greater than n is an out of bounds
error.

type Array a = Int -> a

{-@ type ArrayN a N = {i:Nat | i < N} -> a @-}

new :: Int -> a -> Array a

{-@ new :: n:Nat -> a -> ArrayN a n @-}

new n x = \i -> if 0 <= i && i < n then x else error "Out of Bounds"

set :: Int -> Int -> a -> Array a -> Array a

{-@ set :: n:Nat -> i:{Nat | i < n} -> a -> ArrayN a n -> ArrayN a n @-}

set n i x a = \j -> if i == j then x else a j

get :: Int -> Int -> Array a -> a

{-@ get :: n:Nat -> i:{Nat | i < n} -> ArrayN a n -> a @-}

get n i a = a i

Let’s create an array with 42 elements:

{-@ arr42 :: ArrayN Int 42 @-}

arr42 :: Array Int

arr42 = new 42 0

getElem :: Int

{-@ getElem :: Int @-}

getElem = get 42 10 arr42

Question: What are good indices of arr42?

To put now all the features we learnt together, let’s assume a
function that checks for primality and use it to generate the next
prime number.

{-@ type Prime = {v:Int | isPrime v } @-}

isPrime :: Int -> Bool

{-@ isPrime :: i:Int -> {v:Bool | v <=> isPrime i } @-}

isPrime = undefined

18 programming with refinement types

nextPrime :: Int -> Int

{-@ nextPrime :: Nat -> Prime @-}

nextPrime x = if isPrime x then x else nextPrime (x + 1)

Question: Given nextPrime can you generate an array that con-
tains only prime numbers?

{-@ primes :: n:Nat -> ArrayN Prime n @-}

primes :: Int -> Array Int

primes = undefined

Summary

To sum up the most important features of a refinement type system
are:

• implicit subtyping: the type of 2 turn into a non zero without any
user casts!

• branch sensitivity: the type of the result of a branch depends on the
condition of the branch!

• polymorphism: the type of a function can depend on the type of its
arguments!

We saw the most important rule of a refinement type system!
Next, we will look at the data types (so that we can implement more
structured arrays) and we will go into more examples on how to use
refinement types. But, for completeness, let’s put here the definition
of the language that we have seen and the typing and subtyping
rules.

• Syntax of the language:

refinement types 19

Basic Types b ::= Int | Bool, . . .

Types τ ::= {v : b | p} base
| x : τx → τ function
| ∀α.τ polymorphic

Expressions e ::= x variables
| c constants
| λx.e function
| e x application
| if x then e else e if
| let x = e in e let
| let rec f = e in e recursion
| Λα.e type abs.
| e[τ] type appl.

• Typing rules collected:

T-Sub

Γ ⊢ e : τ1 Γ ⊢ τ1 ⪯ τ2
Γ ⊢ e : τ2

T-Const
Γ ⊢ c : tyConst(c)

T-Var
Γ ⊢ x : Γ(x)

T-Fun
Γ; x : τx ⊢ e : τ

Γ ⊢ λx.e : x : τx → τ
T-App

Γ ⊢ e : (x : τx → τ) Γ ⊢ y : τx
Γ ⊢ e y : x : τx → τ[x/y]

T-If

Γ ⊢ x : {v : bool | p} Γ; y : {y : bool | x} ⊢ e1 : τ Γ; y : {y : bool | ¬x} ⊢ e2 : τ
Γ ⊢ if x then e1 else e2 : τ

T-Let

Γ;⊢ ex : τx Γ; x : τx ⊢ e : τ
Γ ⊢ let x = ex in e : τ

T-Rec

Γ; f : τf ⊢ e f : τf Γ; f : τf ⊢ e : τ
Γ ⊢ let rec f = e f in e : τ

T-TAbs

Γ; α ⊢ e : τ
Γ ⊢ Λα.e : ∀α.τ

T-TInst

Γ ⊢ e : ∀α.τ
Γ ⊢ e[τα] : τ[τα/α]

• Subtyping rules collected:

Sub-Base

Γ ⊢ ∀v : b.p1 ⇒ p2
Γ ⊢ {v : b | p1} ⪯ {v : b | p2}

Sub-Fun

Γ ⊢ τx2 ⪯ τx1 Γ; x2 : τx2 ⊢ τ1[x1/x2] ⪯ τ2
Γ ⊢ x1 : τx1 → τ1 ⪯ x2 : τx2 → τ2

20 programming with refinement types

Sub-Abs

Γ; α ⊢ τ1 ⪯ τ2
Γ ⊢ ∀α.τ1 ⪯ ∀α.τ2

Note: The definitions of the rules are syntactic. One subtyping
rule exists for each type and one typing rule exists for each expres-
sion. The subtyping rule applies to all expressions and in general
make the system not algorithmic (meaning, when does this rule ap-
ply?) To solve this problem and make the system algorithmic Liquid
Haskell uses a bidirectional type checking algorithm. In general, the
above rules are simplified in various ways (e.g., well formedness is
not discussed).

Further Reading

These lectures notes are based on the Liquid Haskell Tutorial. For
further reading on how to develop a refinement type checker for
your own language, you can read the Refinement Types: A Tutorial
and for the theoretical foundations of LiquidHaskell, the publication
Mechanizing Refinement Types.

Cheatsheet

Here is the definition of the primes array.

primes :: Int -> Array Int

primes n = go 1 0 (new n (nextPrime 1))

where

go i j a

| i < n = go (i + 1) (j + 1) (set n j (nextPrime j) a)

| otherwise = a

https://ucsd-progsys.github.io/liquidhaskell-tutorial/
https://arxiv.org/abs/2010.07763
https://dl.acm.org/doi/pdf/10.1145/3632912

2

Data Types

{-# OPTIONS_GHC -fplugin=LiquidHaskell #-}

module Lecture_02_DataTypes where

main :: IO ()

main = return ()

3

Case Study: Insertion Sort

{-# OPTIONS_GHC -fplugin=LiquidHaskell #-}

module Lecture_03_CaseStudy_InsertionSort where

main :: IO ()

main = return ()

4

Abstract Refinement Types

{-# OPTIONS_GHC -fplugin=LiquidHaskell #-}

module Lecture_04_AbstractRefinementTypes where

main :: IO ()

main = return ()

5

Theorem Proving

{-# OPTIONS_GHC -fplugin=LiquidHaskell #-}

module Lecture_05_TheoremProving where

main :: IO ()

main = return ()

6

Data Propositions

{-# OPTIONS_GHC -fplugin=LiquidHaskell #-}

module Lecture_06_DataPropositions where

main :: IO ()

main = return ()

	Refinement Types
	Installation
	Basic Refinement Types
	Subtyping
	From Subtyping to Verification Conditions
	Verification Conditions
	Primitive Operations
	Function Types
	Branching and Recursion
	Refined Polymorphism
	Putting it all together: Safe Indexing
	Summary
	Further Reading
	Cheatsheet

	Data Types
	Case Study: Insertion Sort
	Abstract Refinement Types
	Theorem Proving
	Data Propositions

