, LiquidHaskell
 Theorem Proving for All

Niki Vazou
idea
software

Haskell $+$
 Refinement Types
 $=$
 , LiquidHaskell

Haskell

take :: [a] -> Int -> [a]

$>$ take $[1,2,3] 2$
$>[1,2]$

Haskell

take :: [a] -> Int -> [a]

$>$ take $[1,2,3] 500$
> ???

Refinement Types

take :: xs:[a] -> \{i:Int|i < len xs\} -> [a]

1).LiquidHaskell

take :: xs:[a] -> \{i:Int|i < len xs\} -> [a]
> take $[1,2,3] 500$
> Refinement Type Error!

1) LLiquidHaskell

I. Static Checks: Fast \& Safe Code
II. Application: Speed up Parsing
III. Expressiveness: Theorem Proving

I. Static Checks: Fast \& Safe Code

The Heartbleed Bug

Buffer overread in OpenSSL. 2015

in

module Data.Text where

take :: t:Text -> i:Int -> Text
> take "hat" 500
> *** Exception: Out Of Bounds!

Runtime Checks

take :: t:Text->i:Int->Text
take t i | i < len t
$=$ Unsafe.take t i
take t i
= error "Out Of Bounds!"

Safe, but slow!

No Checks

take :: t:Text->i:Int->Text $=$ Unsafe.take t i taket :
- expop-"0ut θ - Bounds!"

Fast, but unsafe!

No Checks

take :: t:Text->i:Int->Text

$=$ Unsafe.take ti
teket -

- Rnpop-"0ut Of Bounds!"
> take "hat" 500
>"hat\58456\2594\SOH\NUL...

Static Checks

take :: t:Text->i:Int->Text take t i $i<$ len t
$=$ Unsafe take t i
take t i
= error "Out Of Bounds!"

Static Checks

take : : t:Text->i: $i<$ len t Text take ti li < len t $=$ Unsafe. take t i
take t i
= error "Out Of Bounds!"

Static Checks

$$
\begin{aligned}
& \text { take : : t:Text->i: } i<\text { len } t->\text { Text }
\end{aligned}
$$

$$
\begin{aligned}
& =\text { Unsafe.take } \mathrm{t} \text { i }
\end{aligned}
$$

teat ti
———0ut-0f-Bounds!"

Static Checks

take :: t:Text->i:\{i < len t\}->Text take t i
$=$ Unsafe.take ti

Static Checks

take : : t:Text->i:\{i < len t\}->Text take t i
$=$ Unsafe.take t i
> take "hat" 500 Type Error
, LiquidHaskell

Refinement Types

Code $\rightarrow \underbrace{\text { Lidror }}_{\text {, LiquidHaskell }}$

Checks valid arguments, under facts.

Checks valid arguments, under facts.

take : : t:Text-> \{v|v<len t\}->Text heartbleed $=$ let $x=$ "hat" in take x 500
len $x=3$ => v = 500 => v < len x

Checks valid arguments, under facts.

take : : t:Text-> \{v|v<len t\} - > ~ T e x t ~
heartbleed $=\operatorname{let}_{\text {in }} \mathrm{x}=$ "hat"

Len $x=3=>v=500 \Rightarrow v<$ len x

Checks valid arguments, under facts.

take : : t:Text-> \{v|v < len t\}->Text heartbleed $=$ let $x=$ "hat" in take $\times 500$
len $x=3 \Rightarrow>=500 \Rightarrow v<\operatorname{len} x$

Checks valid arguments, under facts.

take : : t:Text-> \{v|v<len t\} - > ~ T e x t ~ heartbleed $=$ let $x=$ "hat"
in take $\times 500$
len $x=3$ => $v=500=>v<$ len x

Checks valid arguments, under facts.

take : : $t:$ Text $->\{v \mid v<$ len $t\}->$ Text heartbleed $=$ let $x=$ "hat" in take x 500
len $x=3=>v=500 \Rightarrow><\operatorname{len} x$

Checks valid arguments, under facts.

take : : t:Text-> \{v|v<len t\} - > ~ T e x t ~ heartbleed $=$ let $x=$ "hat" in take x 500
len $x=3 \Rightarrow v=500 \Rightarrow v<$ len x

Checks valid arguments, under facts.

take : : t:Text-> \{v|v<len t\} - > ~ T e x t ~ heartbleed $=$ let $\mathrm{x}=$ "hat" in take x 500

GMTquery
len $x=3 \Rightarrow v=500 \Rightarrow v<\operatorname{len} x$

Checks valid arguments, under facts.

take : : t:Text-> \{v|v<len t\} - > ~ T e x t ~ heartbleed $=$ let $x=$ "hat" in take x 500
len $x=3 \Rightarrow v=500 \Rightarrow v<\operatorname{len} x$

Checks valid arguments, under facts.

take : : t:Text->\{v|v<len $t\}->$ Text
heartbleed $=$ let $\mathrm{x}=$ "hat"
in take x 500
Checker reports Error

Ien $x=3=>v=500=>v<\operatorname{len} x$

Checks valid arguments, under facts.

take : : t:Text-> \{v|v<len t\}->Text
heartbleed $=$ let $x=$ "hat"
in take $\times 500$
Checker reports Error
len $x=3$ => $v=500 \Rightarrow v<$ len x

Checks valid arguments, under facts.

take : : t:Text-> \{v|v<len t\}->Text heartbleed $=$ let $x=$ "hat"
in take x

Checker reports OK

SMTvalid
len $x=3=>v=2 \Rightarrow \mathrm{v}$ < len x

Code \rightarrow 步LLiquidHaskell

Checks valid arguments, under facts. Static Checks

, LiquidHaskell

I. Static Checks: Fast \& Safe Code

II. Application: Speed up Parsing

III. تxpressiveness: Theorem Proving
I. Static Checks: Fast \& Safe Code

II. Application: Speed up Parsing

III. Expressiveness: Theorem Proving

II. Application: Speed up Parsing

DEMO

Application: Speed up Parsing

Provably Correct \& Faster Code! SMIT-Automatic Verification

SMTT-Automatic Verification

How expressive can we get?

1.LiquidHaskell

I.Static Checks : Fast \& Safe Code
II. Application: Speed up Parsing
III. Expressiveness: Theorem Proving

III. Expressiveness: Theorem Proving

Theorem: For any x, reverse $[x]=[x]$

Proof.

$$
\begin{aligned}
& \text { l. } \begin{array}{l}
\text { reverse }[x] \\
- \\
\text { applying reverse on }[x] \\
= \\
\text { reverse }[]++[x] \\
- \\
= \\
= \\
- \\
= \\
= \\
\\
\\
\\
\\
\\
\\
\text { Qpplying }]++[x]
\end{array}
\end{aligned}
$$

Proof is in pen-and-paper : (

Theorem: For any x, reverse $[x]=[x]$

Proof.

$$
\begin{aligned}
& \text { reverse [x] } \\
& \text { - applying reverse on [x] } \\
& \text { = reverse [] ++ [x] } \\
& \text { - applying reverse on [] } \\
& =\quad[]++[x] \\
& \text { - applying ++ on [] and [x] } \\
& =\quad[\mathrm{x}] \\
& \text { QED }
\end{aligned}
$$

Proof is not machine checked.

Theorem: For any x, reverse $[x]=[x]$

Proof.
reverse [x]

- obviously!
$\begin{aligned}= & {[x] } \\ & Q E D\end{aligned}$
Proof is not machine checked.

Theorem: For any x, reverse $[x]=[x]$

Proof.

$$
\begin{aligned}
& \text { 1. } \begin{array}{l}
\text { reverse }[x] \\
- \\
\text { applying reverse on }[x] \\
= \\
\text { reverse }[]++[x] \\
- \\
= \\
- \\
= \\
= \\
= \\
\\
\\
\\
\\
\text { Qpplying }]+x]
\end{array}
\end{aligned}
$$

Proof is not machine checked. Check it with Liquid Haskell!

Theorems as Refinement Types

Theorem:

$$
\text { For any } x \text {, reverse }[x]=[x]
$$

Refinement Type:
 $x: a \rightarrow\{v:() \mid$ reverse $[x]=[x]\}$ SMT ${ }_{\text {equality }}$

Theorems as Refinement Types

Theorem:

$$
\text { For any } x \text {, reverse }[x]=[x]
$$

Refinement Type:
 $x: a \rightarrow\{$ reverse $[x]=[x]\}$

$$
x: a \rightarrow\{\text { reverse }[x]=[x]\}
$$

Proof.

$$
\begin{aligned}
& \text { reverse [x] } \\
& \text { - applying reverse on [x] } \\
& \text { = reverse [] ++ [x] } \\
& \text { - applying reverse on [] } \\
& =\quad[]++[x] \\
& \text { - applying ++ on [] and [x] } \\
& =\quad[\mathrm{x}] \\
& \text { QED }
\end{aligned}
$$

How to connect theorem with proof?

Theorems are types Proofs are programs

- Curry \& Howard
singletonP : : x:a \rightarrow \{reverse $[x]=[x]\}$ singletonP x

$$
\begin{aligned}
& =\quad \text { reverse }[x] \\
& -\quad \text { applying reverse on }[x] \\
& =\quad \text { reverse }[]++[x] \\
& - \\
& =\quad[]++[x] \\
& - \\
& = \\
& =\quad[x] \\
& \\
& \\
& \text { Qpplying }
\end{aligned}
$$

Proof as a Haskell function
singletonP : : x:a \rightarrow \{ reverse $[x]=[x]\}$
singletonP x

$$
\begin{aligned}
& \text { = reverse [x] } \\
& \text { - applying reverse on [x] } \\
& \text { = reverse [] ++ [x] } \\
& \text { - applying reverse on [] } \\
& =\quad[]++[x] \\
& \text { - applying ++ on [] and [x] } \\
& =\quad[x]
\end{aligned}
$$

Proof as a Haskell function
singletonP : : x:a \rightarrow \{reverse $[x]=[x]\}$
singletonP x

$$
\begin{aligned}
& =\text { reverse }[\mathrm{x}] \\
& - \text { applying reverse on }[\mathrm{x}] \\
& =\quad \text { reverse }[]++[\mathrm{x}] \\
& =\text { applying reverse on }[] \\
& =\quad[]++[\mathrm{x}] \\
& -\quad \text { applying }++ \text { on }[] \text { and }[\mathrm{x}] \\
& =\quad[\mathrm{x}] \\
& \\
& \quad \mathrm{QED}
\end{aligned}
$$

How to encode equality?

Equational Operator in (Liquid) Haskell

$$
\begin{aligned}
& \text { checks both arguments are equal } \\
& (==.) \quad: x: a \rightarrow y:\{a \mid x=y\} \\
& \\
& \\
& \\
& x=\{v: a \mid v=x \& \& v=y\}
\end{aligned}
$$

returns Ind argument.
to continue the proof!
singletonP : : x:a \rightarrow \{reverse $[x]=[x]\}$
singletonP x

$$
\begin{aligned}
& =\text { reverse }[x] \\
& - \text { applying reverse on }[x] \\
& ==\text { reverse }[]++[x] \\
& - \text { applying reverse on }[] \\
& =\quad[]++[x] \\
& - \\
& =\quad[x] \\
& \\
& =\text { Qepplying ++ on }[] \text { and }[x]
\end{aligned}
$$

singletonP : : x:a \rightarrow \{ reverse $[x]=[x]\}$
singletonP x
$=$ reverse [x]

- applying reverse on [x]
==. reverse [] ++ [x]
- applying reverse on []
$==$. [] ++ [x]
- applying ++ on [] and [x]
$==$. $[x]$
QED
singletonP : : x:a \rightarrow \{ reverse $[x]=[x]\}$
singletonP x

$$
\begin{aligned}
& =\text { reverse }[x] \\
& - \text { applying reverse on }[x] \\
& ==. \text { reverse }[]++[x] \\
& - \text { applying reverse on }[] \\
& ==\cdot[]++[x] \\
& - \text { applying ++ on }[] \text { and }[x] \\
& ==[x]
\end{aligned}
$$

How to encode QED?

Define QED as data constuctor...
data QED = QED
... that casts anything into a proof (i.e., a unit value).

$$
\begin{aligned}
& (* * *):: a->\text { QED -> () } \\
& -^{* * *} \text { QED }=()
\end{aligned}
$$

singletonP : : x:a \rightarrow \{reverse $[x]=[x]\}$
singletonP x

$$
\begin{aligned}
& =\text { reverse }[x] \\
& - \text { applying reverse on }[x] \\
& ==. \text { reverse }[]++[x] \\
& - \text { applying reverse on }[] \\
& ==. \quad[]++[x] \\
& - \text { applying ++ on }[] \text { and }[x] \\
& ==.[x] \\
& * * * \text { QED }
\end{aligned}
$$

Theorem Proving in Haskell

Theorems are Types

singletonP : : x:a \rightarrow \{reverse $[x]=[x]\}$

Theorem Application is Function Call

singletonP $1::\{$ reverse $[1]=[1]\}$

Theorem Application is Function Call

singletonP1 :: \{ reverse [1] = [1] \} singletonP1

$$
\begin{array}{rl}
= & \text { reverse [1] } \\
? & \text { singletonP } 1 \\
== & {[1]} \\
* * * & \mathrm{QED}
\end{array}
$$

$$
\begin{aligned}
& \text { (?) : : a -> () -> a } \\
& x ?{ }^{2}=x
\end{aligned}
$$

Theorem Proving for All

Reasoning about Haskell Programs in Haskell!

Equational operators (==., ?, QED, ***)
let us encode proofs as Haskell functions checked by Liquid Haskell.

Theorem Proving for All

Reasoning about Haskell Programs in Haskell!

How to encode inductive proofs?

Theorem: For any list x , reverse (reverse x) = X.

 Proof.Base Case:
reverse (reverse [])

- applying inner reverse
= reverse []
- applying reverse
$=$
QED

```
    Inductive Case:
    reverse (reverse (x:xs))
    - applying inner reverse
= reverse (reverse xs ++ [x])
    - distributivity on (reverse xs) [x]
= reverse [x] ++ reverse (reverse xs)
    - involution on xs
    = reverse [x] ++ xs
    - singleton on x
= [x] ++ xs
    - applying ++
= x:([] ++ xs)
    - applying ++
= (x:xs)
    QED

Theorem: For any list \(x\), reverse (reverse \(x\) ) \(=\mathrm{x}\). Proof.

Base Case:
reverse (reverse [])
- applying inner reverse
\(=\) reverse []
- applying reverse
\(=\quad[]\)
QED
```

 Inductive Case:
 reverse (reverse (x:xs))
 - applying inner reverse
 = reverse (reverse xs ++ [x])
- distributivity on (reverse xs) [x]
= reverse [x] ++ reverse (reverse xs)
- involution on xs
= reverse [x] ++ xs
- singleton on x
= [x] ++ xs
- applying ++
= x:([] ++ xs)
- applying ++
= (x:xs)
QED

```

Step 1: Define a recursive function!

\section*{Theorem: For any list x, reverse (reverse x) = x.}

Proof.
```

involutionP []
= reverse (reverse [])
- applying inner reverse
= reverse []
- applying reverse
= []
QED

```
```

involutionP (x:xs)
= reverse (reverse (x:xs))
- applying inner reverse
= reverse (reverse xs ++ [x])
- distributivity on (reverse xs) [x]
= reverse [x] ++ reverse (reverse xs)
- involution on xs
= reverse [x] ++ xs
- singleton on x
= [x] ++ xs
- applying ++
= x:([] ++ xs)
- applying ++
= (x:xs)
QED

```


\section*{Theorem: For any list x , reverse (reverse x ) = X.}

Proof.
```

involutionP []
==. reverse (reverse [])
- applying inner reverse
==. reverse []
- applying reverse
==. []
*** QED

```
```

involutionP (x:xs)
==. reverse (reverse (x:xs))
- applying inner reverse
==. reverse (reverse xs ++ [x])
- distributivity on (reverse xs) [x]
==. reverse [x] ++ reverse (reverse xs)
- involution on xs
==. reverse [x] ++ xs
- singleton on x
==. [x] ++ xs
- applying ++
==. x:([] ++ xs)
- applying ++
==. (x:xs)
*** QED

```


\section*{Theorem: For any list x , reverse (reverse x ) = X.}

Proof.
```

involutionP []
==. reverse (reverse [])
- applying inner reverse
==. reverse []
- applying reverse
==. []
*** QED

```
```

involutionP (x:xs)
==. reverse (reverse (x:xs))
- applying inner reverse
==. reverse (reverse xs ++ [x])
? distributivityP (reverse xs) [x]
==. reverse [x] ++ reverse (reverse xs)
? involutionP xs
==. reverse [x] ++ xs
? singletonP x
==. [x] ++ xs
- applying ++
==. x:([] ++ xs)
- applying ++
==. (x:xs)
*** QED

```

Step 3: Lemmata are function calls!

\section*{Theorem: For any list x, reverse (reverse x) = x.}

Proof.
```

involutionP []
==. reverse (reverse [])
- applying inner reverse
==. reverse []
- applying reverse
==. []
*** QED

```
```

involutionP (x:xs)
==. reverse (reverse (x:xs))
- applying inner reverse
==. reverse (reverse xs ++ [x])
? distributivityP (reverse xs) [x]
== reverse [x] ++ reverse (reverse xs)
? involutionP xs
==. reverse [x] ++ xs
? singletonP x
==. [x] ++ xs
- applying ++
==. x:([] ++ xs)
- applying ++
==. (x:xs)
*** QED

```

Note: Inductive hypothesis is recursive call!

\section*{Theorem: For any list x, reverse (reverse x) = x.}

Proof.
```

involutionP []
==. reverse (reverse [])
- applying inner reverse
==. reverse []
- applying reverse
==. []
*** QED

```
```

involutionP (x:xs)
==. reverse (reverse (x:xs))
- applying inner reverse
==. reverse (reverse xs ++ [x])
? distributivityP (reverse xs) [x]
== reverse [x] ++ reverse (reverse xs)
? involutionP xs
==. reverse [x] ++ xs
? singletonP x
==. [x] ++ xs
- applying ++
==. x:([] ++ xs)
- applying ++
==. (x:xs)
*** QED

```

Question: Is the proof well founded?

\section*{1)LLiquidHaskell}

\section*{Used to encode pen-and-pencil proofs and function optimizations.}
"Theorem Proving for All", Haskell'18
https://bit.ly/2yjvJo3

\section*{, LiquidHaskell}

Used to encode pen-and-pencil proofs or even sophisticated security proofs.
"LWeb: Information Flow Security for Multi-Tier Web Applications", POPL'19
https://bit.ly/2EcyDAh

\section*{, LiquidHaskell}

Used to encode pen-and-pencil proofs or encode resource analysis.
"Liquidate your assets", POPL'20 https://bit.ly/2Ht3ulG

\section*{, LiquidHaskell}

\section*{Used to encode pen-and-pencil proofs}

But, proof interaction is missing.

\title{
Theorem Proving for All
}
I. Static Checks: Fast \& Safe Code II. Application: Speed up Parsing III. Expressiveness: Theorem Proving
@nikivazou```

